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Abstract
　In the field of artificial intelligence, order-sorted logics, that have subsumption 
relations between sorts, are widely utilized for structural knowledge representations. 
Among them, dual hierarchical systems, that have subsumption relations also in events 
(predicates) as well as sorts (terms), can realize superb efficiency in logical reasoning. In 
ordinary cases, such subsumption relations organizes a lattice, the operations of ‘join’ and 
‘meet’ being assumed. However, in dual systems, the description of two different lattices 

of predicates and sorts, makes us hard to find reasonability between atomic formulae. In 
this paper, we propose a representation of cellular table for the dual hierarchies, assigning 
a Gödel number to each node to identify its spacial position. Thus, we can describe two 
lattices in one table, and in addition, the reasonability between two atomic formulae is 
reduced to simple numerical calculation. Therefore, (i) the reasonability between two 
distant atomic formulae and (ii) the scope of partial negation are easily displayed, and in 
addition, (iii) that the whole table is adequately maintained even in case new subsumption 
relations are added. We implemented a deduction system on a computer, and showed its 
efficiency.

1 　Introduction

In order-sorted logics, a set of objects are classified as a sort and subsumption relations 
are given in sorts. Knowledge can be expressed structurally by these subsumptions. In 
order to represent hierarchical knowledge, order-sorted logics are widely applied in the 
field of artificial intelligence [8].
　In ordinary cases, such subsumption relations organizes a lattice where the operations 
of ‘join’ and ‘meet’ are assumed and the top element 

⊥

 and the bottom element ⊥ uniquely 
exist, respectively. Usually these sorts are used to classify terms, that are arguments of 
predicates. As a special case of the logic, we consider dual lattice systems [12]; that is, 
predicates have subsumption relations as well as terms, viz., term objects organize sort 
hierarchies and predicates objects organize predicate hierarchy independently. For 
knowledge representations, this dual system is very useful. In this paper, we show an 
effective representation for this knowledge representation of dual lattice.
　In the following section, we summarize order sorted logic and the representation with 
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event of channel theory. In Section 3, we define a sentence for our logic. In Section 4, we 
suggest that the representation TDL for dual lattice, assigning a Gödel number for two 
hierarchies. In Section 5, we define a transformation rules of TDL. In Section 6, we 
prove a soundness of TDL. In Section 7, We explain the reasoning mechanism by our TDL 
representation, and its efficiency. In Section 8, we conclude and discuss future subjects.

2 　The dual lattice structure

A sort hierarchy, for maintenance of a knowledge-base and concise representation, is very 
useful. A subsort declaration a  b has an intention for an element x of whole objects as 
follows:
	 ∀x [a(x) " b(x)]� (1)
That is, it is only natural that the semantics request for a relation [[a]] ⊆ [[b]].
　Usually these sorts are used to classify terms, that are arguments of predicates. As a 
special case of the logic, we consider dual lattice systems [12]; that is, predicates have 
subsumption relations as well as terms, viz., term objects organize sort hierarchies and 
predicates objects organize predicate hierarchy independently. For example, the act 
‘roasting’ imply ‘cooking.’ This relation allow us to declare the hierarchical structure 

between roast and cook. For knowledge representations, this dual system is very useful.
　In this paper, we deal with sort hierarchy for predicate and sort, matters that require 
attention is, predicate hierarchy is intended for sets of state(event) 1.

　Therefore, it is not suitable to represent for equation of sort as predicate like as 
follows:
	 ∀x[roast(x) " cook(x)]	 (2)

　1Usually, whenever a predicate p bite a term x, The p(x) is interpreted that x has an attribute a property 
p. However, if we want to treat a sets of state, we must refer to event but property. [8, 9].
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⊤

roast(beef)

cook(meat)

Figure 1: Representation of dual lattice

Therefore, it is not suitable to represent for equation of sort as predicate
like as follows:

∀x[roast(x) → cook(x)] (2)

By Channel-theory 2, if there is one classify the token e by type ‘roast’, it is
represented as e |= roast. Thus, we must improve the (2) to (3).

∀e[e |= roast → e |= cook] (3)

In this paper, ‘⊑p’ represents a subsumption resolution of predicate, and
‘⊑s’ represents a conventionally sort resolution. For example, if we define
the roast ⊑p cook, adding to beef ⊑s meat, we can construct a dual lattice
in Figure 1.

Whenever a hierarchical relation of dual lattice brings about a combina-
tion of (1) and (3), that is, for set P of predicate and set S of sort, p, q ∈ P
and a, b ∈ S ,and p(a) ⊑ q(b), we represent as follows:

∀e∀x[e |= p & a(x) → e |= q & b(x)] (4)

where ‘⊑’ expected the suffix is a composite hierarchical structure. For cor-
rectly description above an equation, by set T of situated tokens and set O
of object, we gain the equation as follows:

[[p(a)]] ≡ {(e, x)|e ∈ [[p]] ⊆ T , x ∈ [[a]] ⊆ O}

and we define that

p(a) ⊑ q(b) iff [[p(a)]] ⊆ [[q(b)]]
2Situation theory or Information flow [5].

3

Figure 1 : Representation of dual lattice
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By Channel-theory2, if there is one classify the token e by type ‘roast’, it is represented as 
e  roast. Thus, we must improve the (2) to (3).
	 ∀e[e  roast " e  cook]	 (3)
　In this paper, ‘ p’ represents a subsumption resolution of predicate, and ‘ s’ represents 
a conventionally sort resolution. For example, if we define the roast p cook, adding to 
beef s meat, we can construct a dual lattice in Figure 1.
　Whenever a hierarchical relation of dual lattice brings about a combination of (1) and 
(3), that is, for set  of predicate and set  of sort, p, q ∈  and a, b ∈  ,and p(a)  
q(b), we represent as follows:
	 ∀e∀x[e  p & a(x) " e  q & b(x)]	 (4)
where ‘ ’ expected the suffix is a composite hierarchical structure. For correctly 
description above an equation, by set  of situated tokens and set  of object, we gain 
the equation as follows:

[[p(a)]] ≡ {(e, x)|e ∈ [[p]] ⊆  , x ∈ [[a]] ⊆ }
and we define that

p(a)  q(b)   iff   [[p(a)]] ⊆ [[q(b)]]
That is, dual sort is an element of a Cartesian-product +  from the two group, the 
whole of the dual sort consist a lattice.
　This composite lattice is representable by preparing the Cartesian-product from two 
lattice in advance. However, two lattice have a possibility of updating, it is inefficient to 
previously calculate a product, and it is difficult to maintain. In this paper, we show a 
system that the dual lattice consists dynamic. Therefore we propose a tabularization for 
dual lattice by using row and column. By our way, we show (i) the efficiently visual 
language and (ii) the easily reasoning system for dual lattice.

3 　Order-sorted Logic and Sets of State

In this paper, we add a new hierarchical structure to the conventional order-sorted logic 
for the sets of state(event). That is, we define the sentence as follows:

Defnition 1.　The language L consists of following symbols.

　1. S(＝ {s1, ..., sn})is a finite set of sorts.
　2. P(＝ {p1, ..., pn})is a finite set of events, called the types.
　3. A set X of objects to be classified, called elements of a classification 〈X, S, :〉.
　4. A set E of objects to be classified, called tokens of a classification 〈E, P, P 〉.
　5. ¬, ∧, ∨, ", ∀, ∃ are logical connectives and quantifiers
　6. (, ), & is supplementary symbols.

　2Situation theory or Information flow [5].
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Defnition 2.　We call the tuple Σ=〈 S, P, :, P, +〉 the signature of the language L.
　1. 2-element subsets S of S called sort subsumption relations.
　2. 2-element subsets P of P called subsumption relations of event.
　3. A binary relation : between X and S that selecting a token out of X in a sort s.
　4. �A binary relation P between E and P that tell one which tokens are classified being 

of which types.
　5. �A binary relation + represent a Cartesian-product between group S and group P. 

And we represent P + S to P(S) simplify.

Defnition 3.　We define binomial operator ‘union (join)’ and ‘intersection (meet)’ to each sorts and 

events as follows:

	 s1 - s2 ＝ glb{s1, s2},	 s1 . s2 ＝ lub{s1, s2},
	 p1 - p2 ＝ glb{p1, p2},	 p1 . p2 ＝ lub{p1, p2},
where glb is the greatest lower bound and lub is the least upper bound. We define ‘top’ as 

⊥

S ＝ .S, 

⊥

P = .P, and ‘bottom’ as ⊥S ＝ -S, ⊥P ＝ -P.
　Then, there are following mathematical properties:

si S si . s,　si - s S si,　pi P pi . p,　pi - p P pi.
Therefore, set of sorts S and set of events P form lattices, respectively.

Defnition 4.　The relation between subsumption relation and implication is as follows:

　1. s1 S s2 then ∀x p(x : s1) " p(x : s2)
　2. p1 P p2 then ∀x p1(x : s) " p2(x : s)
　3. p1 P p2 then ∀x ¬p2(x : s) " ¬p1(x : s)
　4. s1 S s2 then ∀x ¬p(x : s2) " ∀y ¬p(y : s1)

3 . 1 　Semantics
Defnition 5.　A structure M ＝ (U, I) satisfies the following condition:

　1. A set U is nonempty.
　2. A function I satisfies as follows:

For s ∈ S, I(s) ⊆ U,
For si S sj , I(si) ⊆ I(sj).

Defnition 6.　A structure M′ ＝ (E, I′) satisfies the following condition:

　1. A set E is nonempty.
　2. A function I′ satisfies as follows:

For p ∈ P, I′(p) ⊆ E,
For pi P pj, I′(pi) ⊆ I′(pj).

Defnition 7.　For events p, p1, p2 ∈ P and sorts s1, s2 ∈ S, we define an interpretation of the 

binary operator +as follows:
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　1. [[ p(a)]] ≡ {(e, x)|e ∈ [[ p]] ⊆  , x ∈ [[a]] ⊆ }
　2. [[ p +s1 - s2]] = [[ p +glb(s1, s2)]]
　3. [[ p +s1 . s2]] = [[ p + lub(s1, s2)]]
　4. [[ p1 - p2 +s]] = [[ glb( p1, p2) +s]]
　5. [[ p1 . p2 +s]] = [[ lub( p1, p2) +s]]

4 　Tabularisation of Dual Lattice

4 . 1 　Representation of hierarchy using the prime number label
Usually, the hierarchical structure is expressed by HASSE-diagram. Although HASSE-
diagram is intelligible for our visual recognition, it is difficult to implement it on a 
computer. We may be able to implement the dual lattice system, using the Cartesian-
product of predicates and terms; however, the representation requires tremendous memory 
space. In this paper, we propose a more concise TDL(Tabularisation of Dual Lattice).
　First we introduce the TDL, and after that, we define syntax and semantics of the 
representation system. The TDL is consisted of following symbols: closed-curve(cell), line, 
arc, ⊗, consist, ◦, negation symbol(¬). We intend to represent a lattice in one-dimensional 
array, that is a sequence of cells. Each cells are labeled sort or event symbol, represent a 
subset of the domain. Cells are articulated by boundaries, that is a subsumption relation. 
Each sort and event has a prime number that shows a path from 

⊥
 to ⊥, and when there 

is the dividable relation between two sorts, we interpret that there is a subsumption 
relation.
　The line represents the inclusive-or, and ⊗ is used to assert the non-emptiness of a 
represented set.
　For example, let us consider the sort hierarchy as shown in the left side of Fig 2. Then, 
the representation by the cell proposed in this paper is shown in Fig 3. Each sorts are 
assigned by power of prime number as described in Fig 3. For example, assignment of a 
prime number label becomes like the right side of Fig 2.

　That is, a prime number 2  is assigned to the path {

⊥

 " C " A " ⊥} and the factorial 

Example of sort hierarchy

A

C D
E

F

B

Assignment of a prime number label

A

C D
E

F

B

2
B

3 E
5

Figure 2 : Prime number labeling
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of 2  is assigned according to the depth. Thus, only a related sorts has the aliquot relation 
by assigning the factorial of a different prime number according to a different path.
　Note that the number of 3  × 52 of the sort B in Fig. 3  is dividable by 5  of F; thus 
we can infer that the sort F is the higher rank concept of sort B. Because we treat a dual 
lattice system and each of the predicate lattice and the sort lattice would be made into an 
array, we need to layout two arrays on a two-dimensional plane; thus, the representation 
of a dual lattice system would be a table.
　Next, the formal definition to cellular representation is given.

4 . 2 　Syntax
Alphabet　The Cellular language LC consists of following symbols.

	 C　cell
s1, s2,...	 S　sort symbols
p1, p2,...	 P　state symbols(event)
2, 3,...	 G　prime number label
¬	 N　negation symbol
⊗	 E　⊗
—	 L　line
*	 T　total relation

　A horizontal array of cells is called a column, and the perpendicular array is called a 
row, and between cells is called boundary. Those cells which face each other by 
boundaries are called adjacent-cells.

　Now, let there is a subsumption relation {A S B}. The left side in the Fig 4  represents 
∃ x(x : A) and ∃ x(x : B) by TDL. And the right side in the Fig 4  represents ∃ x(x : B ∧ 
x : ¬A).

Signature　We call a tuple 〈Dv, Dr, T〉 the signature of the cellular language LC, where:
Dv	 dividable relation
Dr	 drawing rules
T	 transformational rules

　A drawing rule assigns a prime number label to each sort and each event. A 
transformational rule deduces possible predicate expressions, taking a cell of predicate 

⊥22×3×52

B3×52

A22

E52

C2D3F5 ⊥

Figure 3 : Hierarchical structure by cellular representation
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and a cell of term.

Extended Gödel Number　Prior to introduce the extended Gödel number, we shortly 
review the original Gödel number [15]. For each character Xi of a formal language, we 
uniquely assign a natural number. Let the natural number of character Xi is ni. Then, if 
given a sequence S(＝X1X2 · · ·Xv) of characters, we assign the number G(S)(＝2n1·3n2 · · · · ·pv

nv), 
where pi expresses the i-th prime number, and call the Gödel number of S.

A22
B2 A22

B2

⊗22
⊗2

Figure 4 : The example of TDL

　Now, we introduce our extended Gödel number, that is the number labels tacked to each 
cell. And, a prime number is assigned for every different path X1, X2, · · · , Xv on a HASSE-
diagram, and each sort is given a value ni to Xi (∈ S). If a sort is reachable from multiple 
paths from the superlative sort, the product of the numbers of the multiple supersorts. 
Henceforth, the label (number) of sort ‘s’ is expressed by _si and the label of event ‘p’ is 
expressed by _pi.
　Now, we write p1 Dv p2 that the relation that p1 is dividable by p2. The number label by 
the binomial operator - and . is defined as follows:
	 _s1 - s2i ＝ LCM#_s1i, _s2i-, 	 _s1 . s2i ＝ GCD#_s1i, _s2i-,
	 _p1 - p2i ＝ LCM#_p1i, _p2i-, 	 _p1 . p2i ＝ GCD#_p1i, _p2i-
where LCM denotes the least common multiple and GCD denotes the greatest common 
divisor. Therefore, the labels of 

⊥

S, ⊥S, 

⊥

P and ⊥P are defined that

	 _ ⊥

Si ＝ #_+
i

siiO si ∈ S-,	 _⊥Si ＝ #_,
i

siiO si ∈ S-,

	 _ ⊥

Pi ＝ #_+
i

piiO pi ∈ P-,	 _⊥Pi ＝ #_,
i

piiO pi ∈ P-,

where S is the whole set of sorts and P is the whole set of events.
　Moreover, we correspond the product to +(∈ P × S ). That is, for prime number G1 of 
sort S and prime number G2 of event P, ^P +Sh = ^Ph×^Sh. Then, we gain next theorem.

[Theorem 4.2.1]
A prime number in some cell specify a prime number of sort and event uniquely.

[proof ]
Now, let a prime number is Πi Pi

fi (Pi is a prime number) in some cell. We suppose that Πi Pi
fi 

get the several product. That is, for Πi Pi
fi, by the product of a prime number of sort and 

event,
　　Πi Pi

fi = Πj Pj
fj × Πk Pk

fk (1 ≤ j, k ≤ i)
　　Πi Pi

fi = Πl Pl
fl × Πm Pm

fm (1 ≤ l, m ≤ i).
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Now, we can consider two resolution that Πj Pj
fj, Πl Pl

fl ∈ {^Sh}, Πk Pk
fk, Πm Pm

fm ∈ {^Ph}. For 
the uniquely of prime number resolution, GCD{Pj

fj, Pm
fm} ≠ 1. This is an inconsistent. 

Therefore, every prime number in some cell specify a prime number of sort and event 
uniquely.	 [Q.E.D]

Drawing Rules of TDL　A drawing rule assigns a prime number label to sorts and 
predicates. Because each of the predicate lattice and the sort lattice becomes a one-
dimensional array, the application of drawing rules results in a two-dimensional table. 
Prime number labels are assigned with the following algorithm:

Algorithm 1　(EGN Labeling)
　1. The counter of a prime number is set to c. c ← 2.
　2. Sorting declaration (α β) is input. Otherwise quit.
　3. If β does not exist in a cell, then goto 3.2.
　　3.1 �If α already exists in a cell, then ^γh←^γh×^βh for each of {γ|^γh Dv^αh}. 

Otherwise, ^αh ← c × ^βh, c ← new c, and goto 2.
　　3.2 �If α already exists in a cell, then ^βh ← c, and for each of {γ|^γh Dv^αh}, ^γh 

← ^γh × c. Moreover, c ← new c and goto 2.
　　3.3 ^αh ← c2, ^βh ← c, c ← new c, and goto 2.
　A cell either in a column or in a row represents the depth from 

⊥
. Thus, those sorts in 

a cell have the same depth from the top of the lattice.

4 . 3 　Semantics
Since the dividable relation in labels is a subsumption relation, we first give the following 
definition.

Defnition 8.　The interpretation of a label

For a natural number n and a vertex V on a HASSE-diagram, the relation ⊥V is 
interpreted that (∃m)(m Dv ^V h). If an atomic formula is deducible, that is, (∃m)(m Dv p), 
we write Bew (p), and is called that “p is the Gödel number of beweisbar sort.” If there is 
a subsumption relation (s1 s2) between sort s1 and sort s2, then we write Bew^s1h(^s2h), that 
is, ^s1h Dv ^s2h.
　Next, we define a subsumption relation as an implication.

Defnition 9.　The interpretation of subsumption relation

Given a set of tokens X and a set of sorts S, we define the quadruple 〈X, S, : ,"〉, where 
the triple 〈X, S, : 〉 is a classification and ‘:’ is a function that chooses a token out of X in 
a sort s and ‘"’ is an implication. That is, for x ∈ X, sj ∈ S, there is a relation ‘[[x ]] ∈ [[sj]] 
⊂U’ . In addition, ‘[[ ]]’ expresses an interpretation.
　Then, for ∀ x ∈ X, ∀ sj ∈ S, we define the sort resolution as follows:
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	 x : sj and sj " sk then x : sk	 (5)
　Now, by the formula (5) and the theorem 4.2.1, we obtain the one-to-one mapping to 〈X, 
S, : , Dv〉 from 〈X, S, : ,"〉. Therefore, we give the following definition (6):
	 x : sj and ^sjh Dv ^skh then x : sk	 (6)

Defnition 10.　The interpretation of event resolution

Given a set of tokens E and a set of sorts P, we define the quadruple 〈E, P, P,"〉.
　Then, for ∀e ∈ E, ∀pj ∈ P, we define the event resolution as follows:
	 e : pj and pj " pk then e : pk	 (7)
Now, by the formula (7) and the theorem 4.2.1, we obtain the one-to-one mapping to 〈E, P, 

, Dv〉 from 〈E, P, ,"〉. Therefore, we give the following definition (8):
	 e : pj and ^pjh Dv ^pkh then e : pk	 (8)

Defnition 11.　The interpretation of dual lattice structure

Given a set of sorts S and a set of events P, we define the quadruple 〈P, S, +,"〉. Then, 
for (6), (8), ∀s ∈ S and ∀ pj ∈ P, we give the following definition :
	 pj +s and ^pjh Dv ^pkh then pk +s

Defnition 12.　The interpretation between an elements in TDL and sets

There is a relation of one-to-one mapping between sort and set. Let Us is a set of sort s. 
In this paper, the cell included in sort s, if there is such an area, interpreted by Us\si

, 
where si Dv s.
　Now, we can express the representing facts by means of situation-theoretic terminology 
infons and define a homomorphism h from facts about diagrams to facts about sets as 
follows:
　h ≪ labeled, s; i ≫ = ≪ Empty, Us; i ≫
　h ≪ In, +

p, c; i ≫ = ≪ Exist, element, Usp\si
pj ; i ≫

where p is a prime number and c is a cell.

Defnition 13.　The interpretation of transformation

Let C is set of cells, Δ is set of Cs.
Therefore, the content of a C, Cont(C ), is defined as the set of the represented facts: 
Cont(C ) = {h(α)|C α} , where h is the homomorphism, α is the wff. And Cont(Δ) ＝ 
∪C∈Δ Cont(C ). Thus, let U be a set such that it is an universe of objects, and let Sit be a 
subset that is it closed under ∪ and \, we define what it means for a basic infon to be 
supported by one of these situation s, as follows:
　s ≪ Empty, x; 1 ≫ iff x ∈ s and x ＝ ∅
　s ≪ Empty, x; 0 ≫ iff x ∈ s and x ≠ ∅
　s ≪ Set, x; 1 ≫ iff x ∈ s
Let Σ1, Σ2 be sets of infons, we define the involvement relation as follows:
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　Σ1 ⊇ Σ2 iff ∀s∈Sit(∀α∈Σ1
s  α " ∀β∈Σ2

s  β)
Therefore, for Δ and C,we define as follows:
　Δ  C iff Δ ⊇ C.

Defnition 14.　The interpretation of cell transformation

Given a formula K, a formula K′ obtained by an application of a transformational rule is a 
logical consequence from K.
　Namely, the cellular representation can perform reasoning transitively, as long as two 
formulae are in the dividable relation. Thus, in our system, a step of reasoning is a 
numeric division.

5 　Transformational Rules of TDL

The transformational rules work as deductive rules in the ordinary meaning. The rules fill 
cells up with atomic formulae, which are combinations of events and terms.
　We define (i) the rules between cells and formulae, and (ii) the rules of transformation 
of cells as follows.

( i ) � The rules between cells and formulae
The deductive rules are defined as follows:
∃ − Apply For ∃x P(x : S), the ⊗s filled in the cell which corresponded P and Si, where 
^Sih Dv ^Sh. And each ⊗s labeled ^Ph×^Sih, joined by line.
∃ − PreApply For ∃x P(x : S), the ⊗s filled in the cell which corresponded Pi and S, 
where ^Pih Dv ^Ph. And each ⊗ s labeled ^Pih×^Sh, joined by line.
∃ − Observe If there is a ⊗ in some cell, we get a formula ∃x P(x : S), where ^⊗h ＝ 
^Ph×^Sh. And, for hierarchical structure, for ^Sh Dv ^Sih, ^Ph Dv ^Pih, we gain formulae ∃ x 
Pi (x : Si).
¬∃ − Apply For ¬∃x(x : S), If a ⊗ filled in a column labeled S is dividable ^Sh, we erase 
such ⊗ and join by line the disconnected sequence. And, If the ⊗ labeled * connected, it 
erased too.
¬∀ − Apply For ¬S, we apply the rule of ¬ ∀ − Apply, and erase the {Si|^Sih Dv ^Sh}.
∃ − ¬PreApply For ∃x ¬P(x : S ), the ¬⊗s filled in the cell which corresponded Pi and S, 
where Pi has a relation ^Pih Dv ^Ph. If there is a ⊗ in the corresponded cell, it erased, and 
join by line the disconnected sequence. And, If the ⊗ labeled * connected, it erased too.
∀ − ¬PreApply For ∀x ¬P(x : S ), the ¬⊗s filled in the cell which corresponded Pi and Si, 
where Pi has a relation ^Pih Dv ^Ph and Si has a relation ^Sih Dv ^Sh. If there is a ⊗ in the 
corresponded cell, it erased, and join by line the disconnected sequence. And, If the ⊗ 
labeled * connected, it erased too.
¬ − PreObserve If there is a ¬⊗ in some cell, we get a formula ∃x ¬P(x : S ), where ^⊗h 
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＝ ^Ph × ^Sh.
Inconsistent − Information　If the whole of sequence erased by the rule of ¬∀ − 
PreApply, it is inconsistent.

( i i )  �The rules of transformation of cells
We can apply the rules for cell as follows:
Erase the cell	 we erase a cell which has no label.
Erase the sequence	 we erase the disconnect line.
Expand the sequence	 we join disconnect sequences by line.

　Now, we define the interpretation of negation in TDL as follow:

Defnition 15.　The interpretation of negation

We give two kinds of negation. The first is the negation of a formula itself (classical 
negation), and the second is the complementary set of a formula. For a sort, diagrammatic 
elements erased in cell, thus it represent the fact that the sort with a negation symbol is 
interpreted as a complementary set. A predicate with a negation symbol is interpreted as 
the classical negation.
　Having introduced the concept of a complementary set, we can represent the word 
‘except’ in our ordinary language formally, that has been hard in the conventional 

HASSE-diagram derivation, and can realize more versatile knowledge representation.

6 　Soundness

We define whenever one C is obtainable from a set Δ, the content of diagrams in Δ 
involves the content of C.

[Theorem 6]　Soundness of TDL
We want to prove that if Δ ⊥ C, then Δ  C.

[proof ]
Suppose that Δ ⊥ C. By definition, there is a sequence of < C1, C2, ..., Cn > such that Δ 
＝ Cn. And for each 1  ≤ k ≤ n either (a)there is some C′ such that C′ ∈ Δ and C′ ≡ Ck, 
or (b)there is some C′ such that for some i < k, a rule of transformation allows us to get  
C′ from Ci and C′ ≡ Ck. We show by induction on the length.
(Basis Case)
That is, C 1  ≡ C. Since there is no previous diagram in this sequence, it should be the 
case that there is some C′ such that C′ ∈ Δ and C′ ≡ C1. Thus,
　1. C′ ≡ C
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　2. Cont (C′ ) = Cont(C ) (by 1)
　3. Cont (C′ ) ⊆ Cont(Δ) (since C′ ∈ Δ)
　4. Cont (C ) ⊆ Cont(Δ) (by 2 and 3)
Therefore, Δ  C.
(Inductive Step)
Suppose that for any C if C has a length of a sequence less than n, then Δ  C. We want 
to show that if C has a length of a sequence n then Δ  C. That is Cn ≡ C. If there is 
some C′ such that C′ ∈ Δ and C′ ≡ Cn, then as we proved in the basis case, Δ  C.
Otherwise, it must be the case that there is some C′ such that for some i < n, a rule of 
transformation allow us to get C′ from Ci (*). Now, we represent a TR(Ci) that we apply a 
transformation rule to Ci, then
　TR(Ci) = Ci ∪ Cj (Cj ∈ Δ, j < n) ─ (**)
By our inductive hypothesis, Δ  Ci and Δ  Cj . That is,
Cont(Δ) ⊇ Cont(Ci) and Cont(Δ) ⊇ Cont(Cj). Therefore,
　Cont(Δ) ⊇ (Cont(Ci) ∪ Cont(Cj)).
Moreover, for (*)(**),
　(Cont(Ci) ∪ Cont(Cj)) ⊇ Cont(C′).
By the transitivity of the involvement relation,
　Cont(Δ) ⊇ Cont(C′).
Since C′ ≡ Cn and Cn ≡ C, C′ ≡ C．Hence, Cont(C′ ) = Cont(C ). Accordingly, 
　Cont(Δ) ⊇ Cont(C )．
Therefore, Δ  C.	 [Q.E.D]

7 　The deductive system using TDL

We have implemented this TDL system on a computer. Any user give term subsumption 
relations and predicate subsumption relations to the system, and the system draws the cell 
according to the input. we could represent subsumption relations by numerical dividability. 
Thus, we can easily calculate the logical provability of two formulae, which were placed in 
distant places in the table, and we improved the visibility of the relation of two formulae. 
We estimate the cost for holding an information of subsumption relation to one hierarchy. 
For example, we consider a following set S of subsort declarations.
	 S = {dolphin S mammal, human S mammal, swallow S feather,
	 　　 mammal S animal,  feather S animal}

　Thus, we obtain the cellular representation proposed in this paper as Figure 5.
　Let the new subsumption relation {male S human} is added. If we represent by the 
Cartesian-product, since it is necessary to calculate the transitive relation (male S 
mammal, male S animal), we need complexity of (n2) for the number of sort n. On the 
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other hand, we obtain the TDL proposed in this paper as Figure 6 for the new subsort 
declaration.
　By the TDL, when we add a new subsumption relation, we need a complexity (n) for 
the number of sort n to obtain Figure 6. Because the system rewrites only labels of a 
subset of sorts, the complexity of calculation is greatly cut down.

8 　Conclusion

In this paper, we introduced a representation system TDL for dual lattice systems, in 
which both of predicates(event) and sorts have subsumption relations. Replacing a lattice 
for a one-dimensional array, and drawing a planer table for the arrayed lattices, we 
defined a deduction system that properly fill out the cells in the table. In order to identify 
the position of each predicate and sort in lattices, we assigned a unique Gödel number 
onto it, and we could represent subsumption relations by numerical dividability. Thus, we 
can easily calculate the logical provability of two formulas, which were placed in distant 
places in the table, and we improved the visibility of the relation of two formulae. This 
method is also advantageous in denoting the area of the negation of a formula, considering 
how the negation affects upon adjacent cells (by the effect of freeride [2]). Furthermore, 
the operation of adding/deleting a subsumption relation is easily implemented as 
algorithms to reassign numbers, and this fact enables us easy to maintain a large 
knowledge base in various application fields.
　As future subjects, we consider a plural terms of formulae, and also consider how the 
two kinds of negation (classical negation and complementary set) affects each other in the 
table. In addition, because the current system would unexpectedly produce huge numbers, 
we need to improve the numbering system so as to be able to maintain larger lattices.
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