Triangulated Categories IV:
Admissible Subcategories

寺川 宏之
TERAKAWA Hiroyuki

1 Introduction

This exposition is the fourth part of our study of triangulated categories in algebraic geometry. We shall explain the definitions and fundamental properties of adjoint functors and admissible subcategories of triangulated categories, and describe their proofs in detail.

2 Adjoint Functors

Definition 2.1. Let \(C \) and \(\mathcal{D} \) be categories and let \(L : C \rightarrow \mathcal{D} \) and \(R : \mathcal{D} \rightarrow C \) be functors. We say that the pair \((L, R)\) is a pair of adjoint functors, or \(L \) is a left adjoint functor to \(R \), or \(R \) is a right adjoint functor to \(L \), if there exists an isomorphism \(\Phi \) of bifunctors from \(C^{\text{op}} \times \mathcal{D} \) to \(\text{Set} \):

\[
\text{Hom}_{\mathcal{D}}(L(\bullet), \bullet) \cong \text{Hom}_C(\bullet, R(\bullet)).
\]

We call the above isomorphism the adjunction isomorphism. If \((L, R)\) is a pair of adjoint functors, we often denote it by \(L \dashv R \).

Theorem 2.2. Let \(C \) and \(\mathcal{D} \) be categories and let \(L : C \rightarrow \mathcal{D} \) and \(R : \mathcal{D} \rightarrow C \) be functors. Then we have the following:

(i) If \(L \) admits a right adjoint functor, this adjoint functor is unique up to unique isomorphism.

(ii) If \(R \) admits a left adjoint functor, this adjoint functor is unique up to unique isomorphism.
Moreover, a functor L admits a right adjoint functor if and only if the functor $\text{Hom}_D(L(\bullet), Y)$ is representable for any $Y \in \mathcal{D}$.

Proof. This follows from the Yoneda lemma.

Let X be any object of \mathcal{C}. Applying the isomorphism (2.1) with X and $L(X)$, we find the isomorphism

$$\Phi_{X,L(X)} : \text{Hom}_D(L(X), L(X)) \cong \text{Hom}_C(X, RL(X))$$

and the identity morphism $\text{id}_{L(X)}$ of $L(X)$ defines a morphism $X \rightarrow RL(X)$. Similarly, we have the isomorphism

$$\Phi_{X,Y}^{-1} : \text{Hom}_C(R(Y), R(Y)) \cong \text{Hom}_D(LR(Y), Y)$$

and the identity morphism $\text{id}_{R(Y)}$ of $R(Y)$ defines a morphism $LR(Y) \rightarrow Y$. These morphisms are functorial with respect to X and Y. Hence we obtain constructed morphisms of functors

$$\varepsilon : \text{id}_C \rightarrow R \circ L \quad \text{and} \quad \eta : L \circ R \rightarrow \text{id}_D.$$

The morphism ε (resp. η) is called the counit (resp. unit) of the adjunction Φ.

Proposition 2.3. Let \mathcal{C} and \mathcal{D} be categories and let $L : \mathcal{C} \rightarrow \mathcal{D}$ and $R : \mathcal{D} \rightarrow \mathcal{C}$ be functors. Assume that L is a left adjoint functor to R. Then the adjunction isomorphism

$$\Phi_{X,Y} : \text{Hom}_D(L(X), Y) \cong \text{Hom}_C(X, R(Y))$$

for $X \in \mathcal{C}$ and $Y \in \mathcal{D}$ can be described as

$$\Phi_{X,Y}(f) = R(f) \circ \varepsilon_X \quad \text{and} \quad \Phi_{X,Y}^{-1}(g) = \eta_R \circ L(g)$$

for $f : L(X) \rightarrow Y$ and $g : X \rightarrow R(Y)$.

Proof. Since the adjunction isomorphism Φ is an isomorphism of bifunctors, we have the following commutative diagram

$$\begin{array}{ccc}
\text{Hom}_D(L(X), L(X)) & \xrightarrow{\Phi_{X,L(X)}} & \text{Hom}_C(X, RL(X)) \\
\downarrow f_* & & \downarrow R(f)_* \\
\text{Hom}_D(L(X), Y) & \xrightarrow{\Phi_{X,Y}} & \text{Hom}_C(X, R(Y))
\end{array}$$

for $f : L(X) \rightarrow Y$. Then we obtain

$$\Phi_{X,Y}(f) = (\Phi_{X,Y} \circ f_*)(\text{id}_{L(X)})$$

$$= (R(f)_* \circ \Phi_{X,L(X)})(\text{id}_{L(X)})$$

$$= R(f)_*(\Phi_{X,L(X)}(\text{id}_{L(X)}))$$

$$= R(f)_*(\varepsilon_X)$$

$$= R(f)_* \varepsilon_X.$$

Similarly, we have the following commutative diagram

$$\begin{array}{ccc}
\text{Hom}_D(LR(Y), Y) & \xrightarrow{\Phi_{LR(Y),Y}} & \text{Hom}_C(R(Y), R(Y)) \\
L(g)^* & & \downarrow g^* \\
\text{Hom}_D(L(X), Y) & \xrightarrow{\Phi_{X,Y}} & \text{Hom}_C(X, R(Y))
\end{array}$$

134
for \(g : X \to R(Y) \). Then we obtain
\[
\Phi_{X,Y}^*(g) = (\Phi_{X,Y}^{-1} \circ g^*) (\text{id}_R (0)) \\
= (L(g)^* \circ \Phi_{R(X,Y)}^{-1}) (\text{id}_R (0)) \\
= L(g)^* (\Phi_{R(X,Y)}^{-1} (\text{id}_R (0))) \\
= L(g)^* (\eta_Y) \\
= \eta_Y \circ L(g).
\]
This completes the proof.

Proposition 2.4. Let \(C \) and \(D \) be categories and let \(L : C \to D \) and \(R : D \to C \) be functors. Assume that \(L \) is a left adjoint functor to \(R \). If \(\varepsilon : \text{id}_C \Rightarrow R \circ L \) is the counit and \(\eta : L \circ R \Rightarrow \text{id}_D \) is the unit of the adjunction, then we have the following.

(i) The composition
\[
L \xrightarrow{L \circ \varepsilon} L \circ (R \circ L) = (L \circ R) \circ L \xrightarrow{= \eta L} L
\]
is the identity \(\text{id}_L \).

(ii) The composition
\[
R \xrightarrow{\varepsilon \circ R} (R \circ L) \circ R = R \circ (L \circ R) \xrightarrow{R \circ \eta} R
\]
is the identity \(\text{id}_R \).

Proof. We give only the proof of (i), since the proof of (ii) is similar to that of (i).

By Proposition 2.3, we have
\[
\text{id}_{L(X)} = \Phi_{X,L(X)}^{-1} (\varepsilon_X) = \eta_{L(X)} \circ L (\varepsilon_X)
\]
for any \(X \in C \). Hence we obtain
\[
(\eta \circ L) \circ (L \circ \varepsilon) = \text{id}_L.
\]
This completes the proof.

Proposition 2.5. Let \(C \) and \(D \) be categories and let \(L : C \to D \) and \(R : D \to C \) be functors. Then we have the following commutative diagrams for \(X, X' \in C \) and \(Y, Y' \in D \).

\begin{equation}
\begin{array}{ccc}
\text{Hom}_C(X, X') & \xrightarrow{L} & \text{Hom}_D(L(X), L(X')) \\
& \downarrow \text{\simeq} \downarrow \Phi_{L(X), L(X')} & \downarrow \text{\simeq} \Phi_{X, L(X)} \circ L (\varepsilon_X) \\
& \text{Hom}_C(X, RL(X')) & \\
\end{array}
\end{equation}

\begin{equation}
\begin{array}{ccc}
\text{Hom}_D(Y, Y') & \xrightarrow{R} & \text{Hom}_C(R(Y), R(Y')) \\
& \downarrow \text{\simeq} \downarrow \Phi_{R(Y), Y'} & \downarrow \text{\simeq} \Phi_{R(Y), Y} \circ R (\eta_Y) \\
& \text{Hom}_D(LR(Y), Y') & \\
\end{array}
\end{equation}

Proof. We only show that the diagram (2.2) is commutative, since the proof of the commutativity of (2.3) is similar to that of (2.2).

Since the adjunction isomorphism \(\Phi \) is an isomorphism of bifunctors, we have the
following commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_\mathcal{D} (L(X'), L(X')) & \xrightarrow{\phi_{X, L(X')}} & \text{Hom}_\mathcal{C} (X', RL(X')) \\
L(f)^* & \downarrow & f^* \\
\text{Hom}_\mathcal{D} (L(X), L(X')) & \xrightarrow{\phi_{X, L(X')}} & \text{Hom}_\mathcal{C} (X, RL(X'))
\end{array}
\]

for \(f : X \to X' \). Then we obtain

\[
(\phi_{X, L(X')} \circ L)(f) = \phi_{X, L(X')}(L(f)) = \phi_{X, L(X')}(f^*(\text{id}_L)) = f^*(\phi_{X, L(X')}(\text{id}_L)) = f^*(\varepsilon_X) = \varepsilon_{X'} \circ f = (\varepsilon_X) \circ f.
\]

This completes the proof.

\[\square\]

Proposition 2.6. Let \(\mathcal{C} \) and \(\mathcal{D} \) be categories and let \(L : \mathcal{C} \to \mathcal{D} \) and \(R : \mathcal{D} \to \mathcal{C} \) be functors. Let \(\varepsilon : \text{id}_\mathcal{D} \to R \circ L \) and \(\eta : L \circ R \to \text{id}_\mathcal{D} \) be morphisms of functors. Assume that \((\eta \circ L) \circ (L \circ \varepsilon) = \text{id}_L \) and \((R \circ \eta) \circ (\varepsilon \circ R) = \text{id}_R \). Then \((L, R) \) is a pair of adjoint functors. Moreover \(\varepsilon \) and \(\eta \) are the counit and the unit of the adjunction, respectively.

Proof. For any \(X \in \mathcal{C} \) and \(Y \in \mathcal{D} \), the two composite morphisms

\[
\text{Hom}_\mathcal{D} (L(X), Y) \xrightarrow{R} \text{Hom}_\mathcal{C} (RL(X), R(Y)) \xrightarrow{\varepsilon_Y} \text{Hom}_\mathcal{C} (X, R(Y))
\]

and

\[
\text{Hom}_\mathcal{C} (X, R(Y)) \xrightarrow{L} \text{Hom}_\mathcal{D} (L(X), LR(Y)) \xrightarrow{\eta_{LRY}} \text{Hom}_\mathcal{D} (L(X), Y)
\]

are inverse to each other. Indeed, since \(\varepsilon \) and \(\eta \) are morphisms of functors, we have the following commutative diagrams

\[
\begin{array}{ccc}
LRL(X) & \xrightarrow{\eta_{LRX}} & L(X) \\
\downarrow \text{id}_L & & \downarrow \text{id}_L \\
LR(Y) & \xrightarrow{\eta_Y} & Y,
\end{array}
\begin{array}{ccc}
X & \xrightarrow{\varepsilon_X} & RL(X) \\
\downarrow \text{id}_R & & \downarrow \text{id}_R \\
R(Y) & \xrightarrow{\eta_{RY}} & RLR(Y).
\end{array}
\]

Put \(\Phi_{X,Y} := (\varepsilon_X)^* \circ R \) and \(\Psi_{X,Y} := (\eta_Y)^* \circ L \). Then we obtain

\[
(\Psi_{X,Y} \circ \Phi_{X,Y})(f) = (\eta_Y)^* \circ L \circ (\varepsilon_X)^* \circ R \circ (\eta_Y)^* \circ L \circ (\varepsilon_X)^* \circ R \circ f = (\eta_Y)^* \circ L \circ (\varepsilon_X)^* \circ R \circ f = f \circ \eta_{LRX} \circ L \circ (\varepsilon_X)^* \circ R \circ f = f
\]

and

\[
(\Phi_{X,Y} \circ \Psi_{X,Y})(g) = ((\varepsilon_X)^* \circ R \circ (\eta_Y)^* \circ L \circ g = ((\varepsilon_X)^* \circ R \circ g = (\varepsilon_X)^* \circ R \circ g
\]

136
for any \(f : L(X) \to Y \) and any \(g : X \to R(Y) \). Hence \(\Psi_{X,Y} \circ \Phi_{X,Y} = \text{id} \) and \(\Phi_{X,Y} \circ \Psi_{X,Y} = \text{id} \). Thus \((L, R)\) is a pair of adjoint functors and \(\Phi \) is the adjunction isomorphism.

Moreover, if \(\varepsilon \) and \(\eta \) are the counit and the unit of the adjunction isomorphism \(\Phi \), respectively, then we obtain

\[
e_{X} = \Phi_{X,LX} \circ (\text{id}_{LX}) = ((\varepsilon_{X}) \circ R) \circ (\text{id}_{LX}) \circ \varepsilon_{X} = \varepsilon_{X}
\]

and

\[
\eta_{L} = \Psi_{R\eta} \circ (\text{id}_{R\eta}) = (((\eta_{L}) \circ L) \circ (\text{id}_{R\eta}) = \eta_{L} \circ \text{id}_{R\eta} = \eta_{Y}.
\]

This completes the proof.

In the situation of Proposition 2.6, we say that \((L, R, \varepsilon, \eta) \) is an adjunction and that the counit \(\varepsilon \) and the unit \(\eta \) are the adjunction morphisms.

Proposition 2.7. Let \(\mathcal{C}, \mathcal{D} \) and \(\mathcal{E} \) be categories and let

\[
L : \mathcal{C} \to \mathcal{D}, \quad R : \mathcal{D} \to \mathcal{C}, \quad L' : \mathcal{D} \to \mathcal{E}, \quad R' : \mathcal{E} \to \mathcal{D}
\]

be functors. If \((L, R)\) and \((L', R')\) are pairs of adjoint functors, then \((L' \circ L, R \circ R')\) is a pair of adjoint functors.

Proof. For any \(X \in \mathcal{C} \) and any \(Z \in \mathcal{E} \), we have functorial isomorphisms

\[
\text{Hom}_{\mathcal{E}}(L'L(X), Z) \cong \text{Hom}_{\mathcal{E}}(L(X), R'(Z)) \cong \text{Hom}_{\mathcal{C}}(X, RR'(Z)).
\]

This completes the proof.

Proposition 2.8. Let \(\mathcal{C} \) and \(\mathcal{D} \) be categories and let \(L : \mathcal{C} \to \mathcal{D} \) and \(R : \mathcal{D} \to \mathcal{C} \) be functors. If \((L, R, \varepsilon, \eta)\) is an adjunction, then we have the following:

(i) \(L \) is fully faithful if and only if \(\varepsilon : \text{id}_{\mathcal{C}} \to R \circ L \) is an isomorphism.

(ii) \(R \) is fully faithful if and only if \(\eta : L \circ R \to \text{id}_{\mathcal{D}} \) is an isomorphism.

Proof. We give only the proof of (i), since the proof of (ii) is similar to that of (i).

It follows from the diagram (2.2) that the following two conditions are equivalent:

1. the map \(\text{Hom}_{\mathcal{C}}(X, X') \xrightarrow{\varepsilon_{X}} \text{Hom}_{\mathcal{D}}(L(X), L(X')) \) is an isomorphism for any \(X, X' \in \mathcal{C} \),
2. the map \(\text{Hom}_{\mathcal{C}}(X, X') \xrightarrow{\eta_{X}} \text{Hom}_{\mathcal{D}}(X, RL(X')) \) is an isomorphism for any \(X, X' \in \mathcal{C} \).

Hence by the Yoneda lemma, we find that \(L \) is fully faithful if and only if \(\varepsilon \) is an isomorphism for all \(X \in \mathcal{C} \).

Proposition 2.9. Let \(F : \mathcal{C} \to \mathcal{D} \) be an equivalence of categories. If \(G : \mathcal{D} \to \mathcal{C} \) is a quasi-inverse functor to \(F \), then \(G \) is a left and right adjoint functor to \(F \).
Proof. From the isomorphism \(G \circ F \simeq \text{id}_C \), we have the following commutative diagram

\[
\begin{array}{c}
\text{Hom}_D(F(X'), Y) \cong \text{Hom}_C(GF(X'), G(Y)) \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{Hom}_D(F(X), Y') \cong \text{Hom}_C(GF(X), G(Y'))
\end{array}
\]

for \(f : X \to X' \in \text{Mor}(C) \) and \(g : Y \to Y' \in \text{Mor}(D) \). Hence we obtain an isomorphism of bifunctors

\[
\text{Hom}_D(F(\bullet), \bullet) \cong \text{Hom}_C(\bullet, G(\bullet))
\]

and thus \(F \dashv G \).

Similarly, from the isomorphism \(F \circ G \simeq \text{id}_D \), we obtain \(G \dashv F \). \(\square \)

Proposition 2.10. Let \(C \) and \(D \) be categories and let \(L : C \to D \) and \(R : D \to C \) be functors. If \(\langle L, R, \eta, \varepsilon \rangle \) is an adjunction, then the following conditions are equivalent.

(i) \(L \) is an equivalence of categories.

(ii) \(R \) is an equivalence of categories.

(iii) \(L \) and \(R \) are fully faithful.

Proof. This follows from Proposition 2.8 and Proposition 2.9. \(\square \)

3 Localization of additive categories

Proposition 3.1. Let \(C \) be a category and let \(S \) be a multiplicative system in \(C \). If \(C \) has a zero object 0, then \(C_S \) has also a zero object 0.

Proof. By definition, a zero object 0 is both initial and terminal, and thus for all \(Z \in C \), \(\text{Hom}_C(0, Z) \simeq \{ \eta_Z \} \) and \(\text{Hom}_C(Z, 0) \simeq \{ \xi_Z \} \).

(i) Let \(f \in \text{Hom}_{C_S}(0, 0) \). If \(\xi_f \in S \) and \(f = [(Y, \xi_f, \xi_Y)] \), then we get \(f = [(0, \text{id}_0, \text{id}_0)] = \text{Q}(\text{id}_0) \).

This is visualized by the diagram

\[
\begin{array}{c}
0 \quad 0 \\
\downarrow \quad \downarrow \\
\text{id}_0 \quad \text{id}_0 \\
\end{array}
\]

If there exists no \(Y \in C \) such that \(Y \neq 0 \) and \(\xi_f \in S \), then we get \(f = [(0, \text{id}_0, \text{id}_0)] = \text{Q}(\text{id}_0) \).

Hence, in both cases, we obtain \(\text{Hom}_{C_S}(0, 0) = \{ \text{Q}(\text{id}_0) \} \).

(ii) If \(X \in C_S \) and \(f \in \text{Hom}_{C_S}(0, X) \), then we get \(f = [(X', \xi_f, \xi_Y)] = [(0, \text{id}_0, \eta_Y)] = \text{Q}(\eta_Y) \) in the same way. Hence we obtain \(\text{Hom}_{C_S}(0, X) = \{ \text{Q}(\eta_Y) \} \). This is visualized by the diagram

(iii) If \(X \in C_S \) and \(f \in \text{Hom}_{C_S}(X, 0) \), then we get \(f = [(X', \xi'X, \xi_x)] = [(X, \text{id}X, \xi_x)] = \text{Q}(\xi_x) \).

Hence we obtain \(\text{Hom}_{C_S}(X, 0) = \{ \text{Q}(\xi_x) \} \). This is visualized by the diagram
Therefore 0 is a zero object in \mathcal{C}_S. \hfill \square

Proposition 3.2. Let \mathcal{C} be a category with a zero object 0 and let \mathcal{S} be a left multiplicative system in \mathcal{C}. Then for each object $X \in \mathcal{C}_S$, the followings are equivalent.

(i) $Q(X)=0$ in \mathcal{C}_S.

(ii) There exists an object $Y \in \mathcal{C}$ such that $0 : Y \to X$ belongs to \mathcal{S}.

Proof. (i)\Rightarrow(ii). By Proposition 3.1, we see that $Q(\eta_X) = [(0, \text{id}_0, \eta_X)]$ is an isomorphism in \mathcal{C}_S, since $\text{Hom}_{\mathcal{C}_S}(0, X) = [Q(\eta_X)]$. Hence, by Lemma 4.5. (iv) of [Ter 14], there exists $Y \in \mathcal{C}$ such that $0 = \eta_X \circ \xi_Y : Y \to X \in \mathcal{S}$.

(ii)\Rightarrow(i). Since $0 = \eta_X \circ \xi_Y : Y \to X$ belongs to \mathcal{S}, we get $Q(0) = Q(\eta_X) \circ Q(\xi_Y) = 0$ is an isomorphism. Then we obtain $\text{id}_{Q(0)} = Q(0) \circ Q(0)^{-1} = 0 \circ Q(0)^{-1} = 0$. Hence $Q(X)=0$. \hfill \square

Proposition 3.3. Let \mathcal{C} be an additive category and let \mathcal{S} be a left multiplicative system in \mathcal{C}. Then the localization \mathcal{C}_S is an additive category and $Q : \mathcal{C} \to \mathcal{C}_S$ is an additive functor.

Proof. At the beginning, let us check the axioms AD1—AD3 in Definition 2.12 of [OT14].

(AD1) By Proposition 3.1, there exists a zero object 0 in \mathcal{C}_S.

(AD2) First we show that for all $X, Y \in \mathcal{C}_S$, $\text{Hom}_{\mathcal{C}_S}(X, Y)$ has a structure of an additive group.

(i) Addition map: For each pair (X, Y) of objects $X, Y \in \mathcal{C}_S$, we define the addition map

$$ + : \text{Hom}_{\mathcal{C}_S}(X, Y) \times \text{Hom}_{\mathcal{C}_S}(X, Y) \to \text{Hom}_{\mathcal{C}_S}(X, Y) $$

as follows: Let $f_1, f_2 \in \text{Hom}_{\mathcal{C}_S}(X, Y)$ be any morphisms. Assume that $f_1 = [(X_1, s_1, a_1)]$ and $f_2 = [(X_2, s_2, a_2)]$. By LMS3, we get a commutative diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{t_2} & X_2 \\
\downarrow{t_1} & & \downarrow{s_2} \\
X_1 & \xrightarrow{s_1} & X
\end{array}
$$

in \mathcal{C} with $s_1 \circ t_1 = s_2 \circ t_2 \in \mathcal{S}$. Then we obtain

$$f_1 = [(X_1, s_1, a_1)] = [(Y, s_1 \circ t_1, a_1 \circ t_1)] \quad \text{and} \quad f_2 = [(X_2, s_2, a_2)] = [(Y, s_2 \circ t_2, a_2 \circ t_2)],$$

and we define

$$f_1 + f_2 : = [(Y, s_1 \circ t_1, a_1 \circ t_1 + a_2 \circ t_2)].$$

This is visualized by the diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{s_1 \circ t_1} & a_1 \circ t_1 + a_2 \circ t_2 \\
& & X
\end{array}
$$

(ii) Commutativity: We get

$$f_1 + f_2 = [(Y, s_1 \circ t_1, a_1 \circ t_1 + a_2 \circ t_2)] = [(Y, s_1 \circ t_1, s_2 \circ t_2 + a_1 \circ t_1)] = f_2 + f_1.$$
(iii) Associativity: Let \(f_3 = [(X_3, s_3, a_3)] \in \text{Hom}_{C_3}(X, Y) \) be another morphism. By LMS3, we get a commutative diagram

\[\begin{array}{c}
\text{Z} \\
\downarrow v_1 \\
Y \\
\downarrow t_2 \\
W \\
\downarrow u_2 \\
X_1 \\
\downarrow s_1 \\
X_3 \\
\end{array}\]

in \(C \) with \(s_1 \circ t_1 \circ v_1 = s_2 \circ t_2 \circ v_1 = s_2 \circ u_1 \circ v_2 = s_3 \circ u_2 \circ v_2 \in \text{S} \). Then we have

\[f_1 + f_2 = [(Y, s_1 \circ t_1, a_1 \circ t_1 + a_2 \circ t_2)] = [(Z, s_1 \circ t_1 \circ v_1, (a_1 \circ t_1 + a_2 \circ t_2) \circ v_1)] \]

and

\[f_3 = [(X_3, s_3, a_3)] = [(W, s_3 \circ u_2, a_3 \circ u_3)] = [(Z, s_3 \circ u_2 \circ v_2, a_3 \circ u_2 \circ v_2)]. \]

Hence we get

\[(f_1 + f_2) + f_3 = [(Z, s_1 \circ t_1 \circ v_1, a_1 \circ t_1 \circ v_1 + a_2 \circ t_2 \circ v_1 + a_3 \circ u_2 \circ v_2)]. \]

On the other hand, we have

\[f_2 + f_3 = [(W, s_2 \circ u_1, a_2 \circ u_1 + a_3 \circ u_2)] = [(Z, s_2 \circ u_1 \circ v_2, (a_2 \circ u_1 + a_3 \circ u_2) \circ v_2)] \]

and

\[f_1 = [(X_1, s_1, a_1)] = [(Y, s_1 \circ t_1, a_1 \circ t_1)] = [(Z, s_1 \circ t_1 \circ v_1, a_1 \circ t_1 \circ v_1)]. \]

Hence we get

\[f_1 + (f_2 + f_3) = [(Z, s_1 \circ t_1 \circ v_1, a_1 \circ t_1 \circ v_1 + a_2 \circ u_1 \circ v_2 + a_3 \circ u_2 \circ v_2)]. \]

Since \(t_2 \circ v_1 = u_1 \circ v_2 \), we obtain \(f_1 + f_2 + f_3 = f_1 + (f_2 + f_3). \)

(iv) Identity element: Let \(f = [(X', s, f')] \in \text{Hom}_{C_3}(X, Y). \) Since \(0 = [(X, \text{id}_x, 0)] = [(X', s, 0)], \) we get

\[f + 0 = [(X', s, f')] + [(X', s, 0)] = [(X', s, f' \circ \text{id}_x + 0 \circ s)] = [(X', s, f')] = f. \]

(v) Inverse element: For \(f = [(X', s, f')] \in \text{Hom}_{C_3}(X, Y), \) we put \(-f = [(X', s, -f')]. \) Then we obtain \(f + (-f) = (-f) + f = 0. \)

Next we show that the composition map \(\circ \) is bi-additive. Let \(f_1 = [(X_1, s_1, a_1)], f_2 = [(X_2, s_2, a_2)] \in \text{Hom}_{C_3}(X, Y) \) and \(g = [(Y', t, b)] \in \text{Hom}_{C_3}(Y, Z). \) Assume that \(f_1 = [(X_1, s_1, a_1)] \) and \(f_2 = [(X_2, s_2, a_2)]. \) By LMS3, we get a commutative diagram

\[\begin{array}{c}
W \\
\downarrow u_2 \\
X_2 \\
\downarrow s_2 \\
X_1 \\
\downarrow s_1 \\
X \\
\end{array}\]

in \(C \) with \(s_1 \circ u_1 = s_2 \circ u_2 \in \text{S}. \) Then \(f_1 + f_2 = [(Y, s_1 \circ u_1, a_1 \circ u_1 + a_2 \circ u_2)]. \)

(AD3) For any \(X, Y \in C, \) there exists the direct sum \(X \oplus Y \in C \) and morphisms

\[i_1: X \to X \oplus Y, \quad i_2: Y \to X \oplus Y, \quad p_1: X \oplus Y \to X, \quad p_2: X \oplus Y \to Y \]

such that

140
\[p_2 \circ i_1 = 0, \quad p_1 \circ i_2 = 0, \quad p_1 \circ i_1 = \text{id}_X, \quad p_2 \circ i_2 = \text{id}_Y \]

and
\[i_1 \circ p_1 + i_2 \circ p_2 = \text{id}_{X \oplus Y}. \]

Then for any \(X, Y \in \text{Ob}(C) = \text{Ob}(C) \), we have an object \(Q \left(X \oplus Y\right) \in C_\mathcal{S} \) and morphisms
\[
Q \left(\iota \right) : X \Rightarrow Q \left(X \oplus Y\right), \quad Q \left(\iota \right) : Y \Rightarrow Q \left(X \oplus Y\right),
\]
\[
Q \left(\iota \right) : Q \left(X \oplus Y\right) \Rightarrow X, \quad Q \left(\iota \right) : Q \left(X \oplus Y\right) \Rightarrow Y
\]
such that
\[
Q \left(\iota \right) \circ Q \left(\iota \right) = 0, \quad Q \left(\iota \right) \circ Q \left(\iota \right) = 0, \quad Q \left(\iota \right) \circ Q \left(\iota \right) = \text{id}_X, \quad Q \left(\iota \right) \circ Q \left(\iota \right) = \text{id}_Y
\]

and
\[
Q \left(\iota \right) \circ Q \left(\iota \right) + Q \left(\iota \right) \circ Q \left(\iota \right) = \text{id}_{Q(X \oplus Y)}.
\]

This means that \(Q \left(X \oplus Y\right) \) is the direct sum \(X \oplus Y \) of objects \(X \) and \(Y \) of \(C_\mathcal{S} \).

Finally, we show that the functor \(Q \) is additive. This follows from the proof of (AD3) above. For any \(X, Y \in \text{Ob}(C) = \text{Ob}(C) \), we obtain \(Q \left(X \oplus Y\right) = Q \left(X\right) \oplus Q \left(Y\right) \).

4 Localization of triangulated categories

Let \((D, T)\) be a triangulated category and let \(S \) be a multiplicative system in \(D \).

From Proposition 3.3, we have the following proposition.

Proposition 4.1. \(D_S \) is an additive category and \(Q : D \rightarrow D_S \) is an additive functor.

We define the automorphism \(T_S \) of \(D_S \) as follows:
\[
T_S(X) := T(X)
\]
for any \(X \in \text{Ob}(D_S) = \text{Ob}(D) \), and
\[
T_S \left(\left(\left(X', s, f\right)\right)\right) := \left(\left(T(X'), T(s), T(f)\right)\right)
\]
for each morphism \(\left(\left(X', s, f\right)\right) \in \text{Hom}_{D_S} \left(X, Y\right) \), represented by the roof
\[
\begin{array}{c}
X' \\
\downarrow f \\
X
\end{array}
\]

with \(f \in \text{Hom}_D \left(X', Y\right) \) and \(s \in S \).

Lemma 4.2. \(T_S \circ Q = Q \circ T \).

Proof. For any \(X \in \text{Ob}(D) \), we have
\[
T_S \left(Q \left(X\right)\right) = T_S(X) = T(X) = Q \left(T(X)\right).
\]

For any \(f : X \rightarrow Y \) in \(D \), we have
\[
T_S \left(Q \left(f\right)\right) = T_S \left(\left(\left(X, \text{id}_X, f\right)\right)\right) = \left(\left(T(X), T(\text{id}_X), T(f)\right)\right) = \left(\left(T(X), \text{id}_{T(0)}, T(f)\right)\right) = Q \left(T(f)\right).
\]

Hence we obtain \(T_S Q = Q \circ T \).

141
We define a distinguished triangle in \mathcal{D}_S as a triangle in \mathcal{D} which is isomorphic to the image of a distinguished triangle in \mathcal{D} by Q.

If there is no risk of confusion, we often denote the automorphism T_S simply by T, and we will write a distinguished triangle $X \rightarrow^f Y \rightarrow^g Z \rightarrow^h TX$ instead of a distinguished triangle $X \xrightarrow{Q(f)} Y \xrightarrow{Q(g)} Z \xrightarrow{Q(h)} TX$.

Definition 4.3. \mathcal{S} is said to be **compatible with the triangulation** if the following two axioms are satisfied:

MS6 $s \in \mathcal{S}$ if and only if $T(s) \in \mathcal{S}$.

MS7 Let $X \rightarrow Y \rightarrow Z \rightarrow TX$ and $X' \rightarrow Y' \rightarrow Z' \rightarrow TX'$ be distinguished triangles and let $\alpha : X \rightarrow X'$ and $\beta : Y \rightarrow Y'$ be morphisms with $f' \circ \alpha = \beta \circ f$. Assume that α and β belong to \mathcal{S}. Then there exists a morphism $\gamma : Z \rightarrow Z'$ in \mathcal{S} giving rise to a morphism of distinguished triangles:

$$
\begin{array}{c}
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX \\
\downarrow \alpha \quad \downarrow \beta \quad \downarrow T(\alpha) \\
X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} TX'.
\end{array}
$$

Proposition 4.4. Let (\mathcal{D}, T) be a triangulated category and let \mathcal{S} be a multiplicative system in \mathcal{D}. Assume that \mathcal{S} is compatible with the triangulation. Then (\mathcal{D}_S, T_S) admits a unique structure of triangulated category such that $Q : \mathcal{D} \rightarrow \mathcal{D}_S$ is an exact functor.

Proof. (i) Let us check the axioms TR0—TR5 in Definition 3.2 of [OT14] in order to show that (\mathcal{D}_S, T_S) is a triangulated category.

(TR0) This follows from the definition of a distinguished triangle in \mathcal{D}_S.

(TR1) For all $X \in \mathcal{D}$, we have $Q(X) = X$ and $Q(\text{id}_X) = \text{id}_X$. Then by Lemma 4.2, we see that the axiom TR1 is satisfied.

(TR2) Let $\alpha = [(X', s, f)]$ be a morphism in \mathcal{D}_S with $f \in \text{Hom}_\mathcal{D}(X, Y)$ and $s : X' \rightarrow X \in \mathcal{S}$. Then by TR2, there exists a distinguished triangle $X' \rightarrow Y \rightarrow Z \rightarrow TX'$ in \mathcal{D}. Since $Q(s)$ is an isomorphism, we get the distinguished triangle $X' \xrightarrow{\alpha} Y \rightarrow Z \rightarrow TX'$ in \mathcal{D}_S.

(TR3) This follows from Lemma 4.2.

(TR4) Consider two distinguished triangles $X \rightarrow Y \rightarrow Z \rightarrow TX$ and $X' \rightarrow Y' \rightarrow Z' \rightarrow TX'$ in \mathcal{D} and morphisms $\alpha : X \rightarrow X'$ and $\beta : Y \rightarrow Y'$ in \mathcal{D}_S with $Q(f') \circ \alpha = \beta \circ Q(f)$. Then we have the following commutative diagram in \mathcal{D}_S:

$$
\begin{array}{c}
X \xrightarrow{Q(f')} Y \xrightarrow{Q(g')} Z \xrightarrow{Q(h')} TX \\
\downarrow \alpha \quad \downarrow \beta \quad \downarrow T(\alpha) \\
X' \xrightarrow{Q(f')} Y' \xrightarrow{Q(g')} Z' \xrightarrow{Q(h')} TX'.
\end{array}
$$
By Proposition 4.8 of [Ter14] and the axioms TR2, TR4 and MS7, there exists a commutative diagram in \mathcal{D}

$$
\begin{array}{c}
X \xrightarrow{f} Y \xrightarrow{g} Z' \xrightarrow{h} TX \\
\alpha \downarrow \quad \quad \downarrow \beta' \quad \quad \downarrow T(\alpha') \\
X_1 \xrightarrow{f_1} Y_1 \xrightarrow{u} Z_1 \xrightarrow{\gamma'} TX_1 \\
\downarrow s \quad \quad \downarrow t \quad \quad \downarrow (s) \\
X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} TX'.
\end{array}
$$

where the middle row is a distinguished triangle and s, t, $u \in \mathcal{S}$. Hence we obtain a morphism $\gamma : Z \to Z'$ and a commutative diagram in \mathcal{D}_5:

$$
\begin{array}{c}
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX \\
\alpha \downarrow \quad \quad \downarrow \beta \quad \quad \downarrow T(\alpha) \\
X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} TX'.
\end{array}
$$

(TR5) Consider two morphisms $f : X \to Y$ and $g : Y \to Z$ in \mathcal{D}_5. Assume that $f = [(X, \text{id}_X, f')]$ and $g = [(Y, \text{id}_Y, g')]$. Then apply the axiom TR5 for f' and g', and we get the octahedron diagram in \mathcal{D}. Hence its image by Q gives the octahedron diagram for f and g in \mathcal{D}_5.

(ii) By Lemma 4.2 and the definition of distinguished triangles in \mathcal{D}_5, $Q : \mathcal{D} \to \mathcal{D}_5$ is an exact functor.

(iii) It follows from Proposition 2.2.(ii) of [Ter14] that \mathcal{D}_5 is unique up to equivalence of categories. By MS6, for any $s \in \mathcal{S}$, $T(s) \in \mathcal{S}$ and thus $Q(T(s))$ is an isomorphism. We have $T_5 \circ Q = Q \circ T$ by Lemma 4.2, and thus by Proposition 2.2.(i) of [Ter14], T_5 is unique up to unique isomorphism.

Let \mathcal{C} be a strictly full triangulated subcategory of (\mathcal{D}, T). Then we define a family of morphisms $\mathcal{S}(\mathcal{C})$ in \mathcal{D} associated to \mathcal{C} as follows:

$$
\mathcal{S}(\mathcal{C}) := \left\{ (f : X \to Y) \in \text{Mor}(\mathcal{D}) \mid \begin{array}{l}
\text{there exists a distinguished triangle } \\
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX,
\end{array} \quad \text{with } Z \in \mathcal{C} \right\}
$$

Proposition 4.5. $\mathcal{S}(\mathcal{C})$ is a multiplicative system in \mathcal{D}, compatible with the triangulation.

Proof. Let us check the axioms MS1—RMS4 in Definition 3.1 of [Ter14].

(MS1) For any object $X \in \mathcal{D}$, the triangle $X \to X \to 0 \to TX$ is a distinguished triangle. Since $0 \in \mathcal{C}$, we have $\text{id}_0 \in \mathcal{S}(\mathcal{C})$.

(MS2) Let $f : X \to Y$ and $g : Y \to Z$ be in $\mathcal{S}(\mathcal{C})$. By TR3, there exist distinguished triangles $X \xrightarrow{id} X \xrightarrow{0} 0 \xrightarrow{0} TY$ and $X \xrightarrow{g \circ f} Z \xrightarrow{h} TX$. By TR5, we obtain a distinguished triangle $Z' \to Y' \to X' \to TZ'$, Since $Z', X' \in \mathcal{C}$ and \mathcal{C} is extension-closed, $Y' \in \mathcal{C}$ and thus $g \circ f \in \mathcal{S}(\mathcal{C})$.

(RMS3) Similarly, let $f : Y \to X$ and $s : Y \to Y'$ be two morphisms with $s \in \mathcal{S}(\mathcal{C})$. Then there
exists a distinguished triangle \(Z \xrightarrow{h} Y \xrightarrow{s} Y' \xrightarrow{g} TZ \) with \(Z \in \mathcal{C} \). By TR2, there exists a distinguished triangle \(Z \xrightarrow{f \circ h} X \xrightarrow{g} W \xrightarrow{h} TZ \), and by TR4, there exists a morphism of distinguished triangles:

\[
\begin{array}{c}
Z \xrightarrow{h} Y \xrightarrow{s} Y' \xrightarrow{g} TZ \\
\downarrow f \circ h \downarrow g \\
Z \xrightarrow{f \circ h} X \xrightarrow{g} W \xrightarrow{h} TZ.
\end{array}
\]

Since \(Z \in \mathcal{C} \), we obtain \(t \in \mathcal{S}(\mathcal{C}) \).

(LMS3) Let \(f : X \rightarrow Y \) and \(s : Y' \rightarrow Y \) be two morphisms with \(s \in \mathcal{S}(\mathcal{C}) \). Then there exists a distinguished triangle \(Y' \xrightarrow{i} Y \xrightarrow{h} Z \xrightarrow{g} TY' \) with \(Z \in \mathcal{C} \). By TR2, there exists a distinguished triangle \(W \xrightarrow{h \circ f} X \xrightarrow{h} Z \xrightarrow{g} T W \), and by Lemma 3.4 of [OT14], there exists a morphism of distinguished triangles:

\[
\begin{array}{c}
W \xrightarrow{t} X \xrightarrow{h \circ f} Z \xrightarrow{g} T W \\
\downarrow f \downarrow g \\
Y' \xrightarrow{s} Y \xrightarrow{h} Z \xrightarrow{g} TY'.
\end{array}
\]

Since \(Z \in \mathcal{C} \), we obtain \(t \in \mathcal{S}(\mathcal{C}) \).

(RMS4 and LMS4) Let \(f, g : X \rightarrow Y \) be two parallel morphisms in \(\mathcal{D} \). Since \(\mathcal{D} \) is an additive category, it is enough to check that the following conditions are equivalent:

(i) there exists \(s : Y \rightarrow Y' \) in \(\mathcal{S}(\mathcal{C}) \) with \(s \circ f = 0 \).

(ii) there exists \(t : X' \rightarrow X \) in \(\mathcal{S}(\mathcal{C}) \) with \(f \circ t = 0 \).

(i) \(\Rightarrow \) (ii). If \(s : Y \rightarrow Y' \) in \(\mathcal{S}(\mathcal{C}) \), then by TR3, there exists a distinguished triangle \(T^{-1} W \rightarrow Y \rightarrow Y' \rightarrow W \) with \(W \in \mathcal{C} \). Since \(s \circ f = 0 \), by Proposition 3.8 of [OT14], there exists a morphism \(h : X \rightarrow T^{-1} W \) such that \(f = v \circ h \). Then, by TR2 and TR3, we obtain a distinguished triangle \(X' \xrightarrow{h} X \xrightarrow{T} W \xrightarrow{T} TX' \) and a morphism \(t : X' \rightarrow X \in \mathcal{S}(\mathcal{C}) \) since \(W \in \mathcal{C} \). By Proposition 3.5 of [OT14], we get \(f \circ t = v \circ h \circ t = 0 \).

(ii) \(\Rightarrow \) (i). Since \(t : X' \rightarrow X \) in \(\mathcal{S}(\mathcal{C}) \), there exists a distinguished triangle \(X' \xrightarrow{h} X \xrightarrow{u} Z \xrightarrow{g} TX' \) with \(Z \in \mathcal{C} \). Since \(f \circ t = 0 \), by Proposition 3.8 of [OT14], there exists a morphism \(g : Z \rightarrow Y \) such that \(f = g \circ u \). Then, by TR2, we obtain a distinguished triangle \(Z \xrightarrow{g} Y \xrightarrow{h} Y' \xrightarrow{g} TZ \) and a morphism \(s : Y \rightarrow Y' \in \mathcal{S}(\mathcal{C}) \) since \(Z \in \mathcal{C} \). By Proposition 3.5 of [OT14], we get \(s \circ f = s \circ g \circ u = 0 \).

(MS 6) If \((s : X \rightarrow Y) \in \mathcal{S}(\mathcal{C}) \), there exists a distinguished triangle \(X \xrightarrow{s} Y \xrightarrow{g} Z \xrightarrow{h} TX \) in \(\mathcal{D} \), and by TR3, we have a distinguished triangle \(TX \xrightarrow{-T(s)} TY \xrightarrow{-T(g)} TZ \xrightarrow{-T(h)} T^2 X \). From the isomorphism of distinguished triangles:

\[
\begin{array}{c}
TX \xrightarrow{-T(s)} TY \xrightarrow{-T(g)} TZ \xrightarrow{-T(h)} T^2 X \\
\downarrow \text{id}_{TX} \downarrow \text{id}_{TY} \downarrow \text{id}_{TZ} \downarrow \text{id}_{T^2 X}
\end{array}
\]

we get \(T(s) \in \mathcal{S}(\mathcal{C}) \) because \(Z \in \mathcal{C} \). Conversely, if \(T(s) \in \mathcal{S}(\mathcal{C}) \), we get \(s \in \mathcal{S}(\mathcal{C}) \) in the same
way.

(MS7) Let \(X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX \) and \(X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} TX' \) be distinguished triangles and let \(\alpha : X \rightarrow X' \) and \(\beta : Y \rightarrow Y' \) be morphisms with \(f' \circ \alpha = \beta \circ f \). Assume that \(\alpha \) and \(\beta \) belong to \(\mathcal{S}(\mathcal{C}) \). By Proposition 3.20 of [OT14], we get the following diagram of distinguished triangles in \(\mathcal{D} \):

\[
\begin{array}{cccccc}
X & \xrightarrow{f} & Y & \xrightarrow{g} & Z & \xrightarrow{h} & TX \\
\downarrow{\alpha} & & \downarrow{\beta} & & \downarrow{T(\alpha)} \\
X' & \xrightarrow{f'} & Y' & \xrightarrow{g'} & Z' & \xrightarrow{h'} & TX' \\
\downarrow{\gamma} & & \downarrow{\gamma} & & \downarrow{\gamma} \\
X'' & \xrightarrow{f''} & Y'' & \xrightarrow{g''} & Z'' & \xrightarrow{h''} & TX'' \\
\downarrow{\alpha} & & \downarrow{\gamma} & & \downarrow{\gamma} \\
TX & \xrightarrow{f''} & TY & \xrightarrow{g''} & TZ & \xrightarrow{h''} & T^2X.
\end{array}
\]

Since \(\alpha, \beta \in \mathcal{S}(\mathcal{C}), X'', Y'' \in \mathcal{C} \), and thus \(Z'' \in \mathcal{C} \). Hence we obtain \(\gamma \in \mathcal{S}(\mathcal{C}) \).

Therefore we can obtain the localization of a triangulated category \((\mathcal{D}, T) \) by a multiplicative system \(\mathcal{S}(\mathcal{C}) \).

Definition 4.6. The localization \(\mathcal{D}_{\mathcal{S}(\mathcal{C})} \) of \(\mathcal{D} \) by \(\mathcal{S}(\mathcal{C}) \) is called the **Verdier quotient** of \(\mathcal{D} \) by \(\mathcal{C} \) and denoted by \(\mathcal{D}/\mathcal{C} \). The localization functor \(Q : \mathcal{D} \rightarrow \mathcal{D}/\mathcal{C} \) is called the **Verdier localization functor**.

Definition 4.7. A subcategory \(\mathcal{C} \) of a triangulated category \((\mathcal{D}, T) \) is said to be **epaissé** if it is a full triangulated subcategory of \(\mathcal{D} \) and the following condition EP is satisfied:

EP If \(X \rightarrow Y \) is a morphism in \(\mathcal{D} \) which is contained in a distinguished triangle \(X \rightarrow Y \rightarrow Z \rightarrow TX \) with \(Z \in \mathcal{C} \), and if the morphism also factors through an object \(W \) of \(\mathcal{C} \), then \(X \) and \(Y \) are objects of \(\mathcal{C} \).

Definition 4.8. A full subcategory \(\mathcal{C} \) of a triangulated category \(\mathcal{D} \) is **closed under direct summands** if every object of \(\mathcal{D} \) which is a direct summand of an object of \(\mathcal{C} \) is itself an object of \(\mathcal{C} \).

Remark 4.9. From definitions, we have the following.

1. An epaissé subcategory \(\mathcal{C} \) of a triangulated category \(\mathcal{D} \) is strictly full.
2. A full subcategory \(\mathcal{C} \) of a triangulated category \(\mathcal{D} \) which is closed under direct summands is strictly full.

Proposition 4.10. A full triangulated subcategory \(\mathcal{C} \) of a triangulated category \(\mathcal{D} \) is epaissé if and only if it is closed under direct summands.

Proof. Suppose first that \(\mathcal{C} \) is epaissé and that \(X \simeq X_1 \oplus X_2 \) is in \(\mathcal{C} \). Then we have a

145
distinguished triangle $X_1 \rightarrow X \rightarrow X_2 \rightarrow TX$. Hence we obtain a distinguished triangle

$$
\begin{array}{c}
TX_2 \xrightarrow{0} X_1 \xrightarrow{0} X \xrightarrow{0} X_2,
\end{array}
$$

so X_1 and X_2 belong to \mathcal{C}.

Suppose now that \mathcal{C} is closed under direct summands, and let $f : X \rightarrow Y$ be a morphism in \mathcal{D} that factors through an object W of \mathcal{C} and that is contained in a distinguished triangle

$$
\begin{array}{c}
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX,
\end{array}
$$

with $Z \in \mathcal{C}$. Then we have the following diagram by the octahedron axiom for $X \xrightarrow{\alpha} W \xrightarrow{\beta} Y$:

Consider the composition of morphisms $Z \xrightarrow{h} TX \xrightarrow{T(\alpha)} TW$ coming from this diagram. Then we obtain the following diagram by the octahedron axiom:

The morphism $L \xrightarrow{T(\gamma) \circ \gamma} TY$ in this diagram factors as

$$
L \xrightarrow{\gamma} TX \xrightarrow{T(\alpha)} TW \xrightarrow{T(\gamma)} TY,
$$

but the composition $L \xrightarrow{\gamma} TX \xrightarrow{T(\alpha)} TW$ is zero, since it is the composition of two morphisms in a distinguished triangle. Hence N is isomorphic to the direct sum $TY \oplus TL$, thus Y is an object of \mathcal{C}, and so is X.

Definition 4.11. Let (\mathcal{D}, T) and (\mathcal{D}', T') be triangulated categories and let $F : \mathcal{D} \rightarrow \mathcal{D}'$ be
an exact functor. The kernel of F is the full subcategory \mathcal{C} of \mathcal{D} whose objects map to objects of \mathcal{D}' isomorphic to 0, i.e.,
\[
\text{Ob}(\mathcal{C}) = \{ X \in \text{Ob}(\mathcal{D}) \mid F(X) \cong 0 \}.
\]
The kernel of F is denoted by $\text{Ker}(F)$.

Proposition 4.12. Let (\mathcal{D}, T) and (\mathcal{D}', T') be triangulated categories and let $F: \mathcal{D} \to \mathcal{D}'$ be an exact functor. Then the kernel of F is an epaisse subcategory of \mathcal{D}.

Proof. Since F is exact, we have $FT(X) \cong TF(X)$ and $T^{-1}F(X) \cong FT^{-1}(X)$ for any $X \in \mathcal{D}$. Then we obtain $TX \in \text{Ker}(F)$ and $T^{-1}X \in \text{Ker}(F)$ for any $X \in \text{Ker}(F)$. Hence $\text{Ker}(F)$ is closed under translation.

Let $X \to Y \to Z \to TX$ be a distinguished triangle in \mathcal{D} with $X, Y \in \text{Ker}(F)$. Then $F(Z) \cong 0$, since F is exact. Hence $Z \in \text{Ker}(F)$. Therefore $\text{Ker}(F)$ is a triangulated subcategory of \mathcal{D}.

Since F is an additive functor, we have $F(X \oplus Y) \cong F(X) \oplus F(Y)$. If $F(X \oplus Y) \cong 0$, then so are $F(X)$ and $F(Y)$, since they are direct summands of 0. Hence $\text{Ker}(F)$ is closed under direct summands.

Proposition 4.13. Let \mathcal{C} be a strictly full triangulated subcategory of a triangulated category (\mathcal{D}, T). Let \mathcal{D}/\mathcal{C} be the Verdier quotient of \mathcal{D} by \mathcal{C} and $Q : \mathcal{D} \to \mathcal{D}/\mathcal{C}$ the Verdier localization functor.

(i) If $X \in \mathcal{C}$, then $Q(X) \cong 0$. Hence $\mathcal{C} \subseteq \text{Ker}(Q)$.

(ii) Assume that \mathcal{C} is epaisse. Then $X \in \mathcal{C}$ if and only if $Q(X) \cong 0$. Hence $\mathcal{C} = \text{Ker}(Q)$.

Proof. (i) Consider a distinguished triangle $0 \to X \to T(0)$. Since $X \in \mathcal{C}$, the morphism $0 \to X$ belongs to \mathcal{S}(\mathcal{C})$, and thus $Q(0) \to Q(X)$ is an isomorphism. $Q(0) = 0$ because Q is an additive functor. Hence $Q(X)$ is isomorphic to 0.

(ii) If $Q(X) \cong 0$, then by Proposition 3.2, there exists $Y \in \mathcal{D}$ such that $0 : Y \to X$ belongs to \mathcal{S}(\mathcal{C}). Hence we have a distinguished triangle $X \to Z \to TY \to TX$ with $Z \in \mathcal{C}$. Then $Z \cong X \oplus TY$. Since \mathcal{C} is epaisse, we obtain $X \in \mathcal{C}$.

Proposition 4.14. Let $F : \mathcal{D} \to \mathcal{D}'$ be an exact functor of triangulated categories. Assume that \mathcal{C} is a triangulated subcategory of \mathcal{D} such that $\mathcal{C} \subseteq \text{Ker}(F)$. Then F factors uniquely through the Verdier quotient $Q : \mathcal{D} \to \mathcal{D}/\mathcal{C}$.

Proof. Let $s : X \to Y$ be any morphism in \mathcal{S}(\mathcal{C}). Then there exists a distinguished triangle $X \to Y \to Z \to TX$ with $Z \in \mathcal{C}$. Apply the exact functor F to this triangle, and we get a distinguished triangle
\[
F(X) \xrightarrow{F(s)} F(Y) \to F(Z) \to TF(X).
\]
By Corollary 3.12 of [OT14], $F(s)$ is an isomorphism since $F(Z) \cong 0$, Hence it follows from the axiom L2 that F factors uniquely through Q.

Proposition 4.15. If \mathcal{C} is an epaisse subcategory of a triangulated category \mathcal{D}, then the multiplicative system $\mathcal{S}(\mathcal{C})$ associated with \mathcal{C} is saturated.

Proof. Let $r : V \to X$, $s : X \to Y$ and $t : Y \to Z$ be morphisms such that $s \circ r$ and $t \circ s$ belong to $\mathcal{S}(\mathcal{C})$. Suppose that morphisms $s \circ r$, s, $t \circ s$ and t are completed to distinguished triangles

$$
\begin{align*}
V \xrightarrow{s \circ r} Y \xrightarrow{r} W \xrightarrow{} TY, \\
X \xrightarrow{s} Y \xrightarrow{g} Z' \xrightarrow{} TX, \\
X \xrightarrow{r \circ s} Z \xrightarrow{f} Y' \xrightarrow{} TX, \\
Y \xrightarrow{t} Z \xrightarrow{} X' \xrightarrow{f} TY.
\end{align*}
$$

Since $g \circ (s \circ r) = (g \circ s) \circ t = 0$, g factors through an object W of \mathcal{C} because we obtain the following diagram of distinguished triangles

$$
\begin{array}{ccc}
V & \xrightarrow{s \circ r} & Y \\
\downarrow{0} & & \downarrow{g} \\
0 & \xrightarrow{id} & Z'
\end{array}
\quad
\begin{array}{ccc}
Y & \xrightarrow{r} & W \\
\downarrow{T(0)} & & \downarrow{T(0)} \\
0 & \xrightarrow{id'} & Z'
\end{array}
$$

Then $T(g) \circ f : X' \to TZ'$ also factors through TW.

Now we have the following diagram by the octahedron axiom:

$$
\begin{array}{cccc}
X & \xrightarrow{s} & Y & \xrightarrow{g} Z' \\
\downarrow{id} & & \downarrow{t} & \downarrow{id} \\
X & \xrightarrow{r \circ s} & Z & \xrightarrow{t} Y' \\
\downarrow{s} & & \downarrow{id} & \downarrow{T(s)} \\
Y & \xrightarrow{t} & Z & \xrightarrow{f} X' \\
\downarrow{id} & & \downarrow{id} & \downarrow{T(g) \circ f} \\
Z' & \xrightarrow{} & Y' & \xrightarrow{} X' \\
\quad & \xrightarrow{} & & \xrightarrow{}
\end{array}
$$

Since $t \circ s \in \mathcal{S}(\mathcal{C})$, we have $Y' \in \mathcal{C}$, and $TY' \in \mathcal{C}$. Thus we see X' and TZ' are objects of \mathcal{C} because we have the following diagram

$$
X' \xrightarrow{T(g) \circ f} TZ' \xrightarrow{} TY' \xrightarrow{} TX'.
$$

In particular, Z' is an object of \mathcal{C}. Therefore s is in $\mathcal{S}(\mathcal{C})$. \qed

Definition 4.16. Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$ be exact functors between triangulated categories \mathcal{C}, \mathcal{D} and \mathcal{E}, respectively. Then a sequence $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ is called an **exact triple** if

(i) \mathcal{C} is an epaisse subcategory of \mathcal{D} and F is the inclusion functor,

(ii) \mathcal{E} is the Verdier quotient \mathcal{D}/\mathcal{C} of \mathcal{D} by \mathcal{C} and G is the Verdier localization functor. \qed

5 Admissible subcategories

Let \mathcal{D} be an additive category and let \mathcal{A} be a full subcategory of \mathcal{D}. Then we have the
following:
1. \mathcal{A}^{\perp} and $^\perp \mathcal{A}$ are strictly full additive subcategories of \mathcal{D}.
2. $\mathcal{A} \cap \mathcal{A}^{\perp} = 0$ and $\mathcal{A} \cap ^\perp \mathcal{A} = 0$.

Proposition 5.1. If (\mathcal{D}, T) is a triangulated category and \mathcal{A} is a full triangulated subcategory of \mathcal{D}, then \mathcal{A}^{\perp} and $^\perp \mathcal{A}$ are also triangulated subcategories.

Proof. Let $Y \in \mathcal{A}^{\perp}$. Since $\text{Hom}_{\mathcal{D}}(X, Y) = 0$ for all $X \in \mathcal{A}$, we have
$$\text{Hom}_{\mathcal{D}}(X, T^{i}Y) \cong \text{Hom}_{\mathcal{D}}(T^{-i}X, Y) = 0$$
for all $X \in \mathcal{A}$ and all $i \in \mathbb{Z}$. Hence $T^{i}Y \in \mathcal{A}^{\perp}$, and thus $T\mathcal{A}^{\perp} = \mathcal{A}^{\perp}$.

Let $X \rightarrow Y \rightarrow Z \rightarrow TX$ be a distinguished triangle in \mathcal{D} with $X, Y \in \mathcal{A}^{\perp}$. Then applying $\text{Hom}_{\mathcal{D}}(W, \bullet)$ with any $W \in \mathcal{A}$, we have the exact sequence
$$\text{Hom}(W, Y) \rightarrow \text{Hom}(W, Z) \rightarrow \text{Hom}(W, TX).$$
Since $\text{Hom}(W, Y) = \text{Hom}(W, TX) = 0$, we obtain $\text{Hom}(W, Z) = 0$, and thus $Z \in \mathcal{A}^{\perp}$. By Corollary 3.19 of [OT 14], we see that \mathcal{A}^{\perp} is a triangulated category.

Similarly, let $X \in ^\perp \mathcal{A}$. Since $\text{Hom}_{\mathcal{D}}(X, Y) = 0$ for all $Y \in \mathcal{A}$, we have
$$\text{Hom}(T^{i}X, Y) \cong \text{Hom}(X, T^{-i}Y) = 0$$
for all $Y \in \mathcal{A}$ and all $i \in \mathbb{Z}$. Hence $T^{i}X \in ^\perp \mathcal{A}$, and thus $T^{\perp} = ^\perp \mathcal{A}$.

Let $X \rightarrow Y \rightarrow Z \rightarrow TX$ be a distinguished triangle in \mathcal{D} with $X, Y \in ^\perp \mathcal{A}$. Then applying $\text{Hom}_{\mathcal{D}}(\bullet, W)$ with any $W \in \mathcal{A}$, we have the exact sequence
$$\text{Hom}(TX, W) \rightarrow \text{Hom}(Z, W) \rightarrow \text{Hom}(Y, W).$$
Since $\text{Hom}(TX, W) = \text{Hom}(Y, W) = 0$, we obtain $\text{Hom}(Z, W) = 0$, and thus $Z \in ^\perp \mathcal{A}$. By Corollary 3.19 of [OT 14], we see that $^\perp \mathcal{A}$ is a triangulated category. \qed

The category \mathcal{A} is contained in the second orthogonals $^\perp (\mathcal{A}^{\perp})$ and $(^\perp \mathcal{A})^{\perp}$. If it is necessary to indicate the ambient category \mathcal{D}, the orthogonals will be denoted as, e.g., $(\mathcal{A}^{\perp}) \mathcal{D}$.

Lemma 5.2. Let (\mathcal{D}, T) be a triangulated category and let \mathcal{A} be a strictly full triangulated subcategory of \mathcal{D}. Then we have the followings:

(i) For any $X \in \mathcal{D}$ and any $Y \in \mathcal{A}^{\perp}$,
$$\text{Hom}_{\mathcal{D}}(X, T^{i}Y) \rightarrow \text{Hom}_{\mathcal{D}/\mathcal{A}}(QX, QT^{i}Y),$$
where $T^{i} : \mathcal{A}^{\perp} \rightarrow \mathcal{D}$ the inclusion functor. In particular, the composite functor $Q \circ T^{i} : \mathcal{A}^{\perp} \rightarrow \mathcal{D}/\mathcal{A}$ is fully faithful.

(ii) For any $X \in \mathcal{D}$ and any $Y \in ^\perp \mathcal{A}$,
$$\text{Hom}_{\mathcal{D}}(T^{i}Y, X) \rightarrow \text{Hom}_{\mathcal{D}/\mathcal{A}}(Q^{\perp}T^{i}Y, QX),$$
where $T^{i} : ^\perp \mathcal{A} \rightarrow \mathcal{D}$ the inclusion functor. In particular, the composite functor $Q \circ T^{i} : ^\perp \mathcal{A} \rightarrow \mathcal{D}/\mathcal{A}$ is fully faithful.

Proof. We give only the proof of (i), since the proof of (ii) is similar to that of (i).

Let $(s : X' \rightarrow X) \in S(\mathcal{A})$. Then we have a distinguished triangle $X' \rightarrow X \rightarrow X'' \rightarrow TX'$ with
$X'' \in \mathcal{A}$, and $\text{Hom}_D(T'X'', \epsilon^+Y) = 0$ for any integer i, since $Y \in \mathcal{A}^\perp$. Hence $\text{Hom}_D(X', \epsilon^+Y) \simeq \text{Hom}_D(X, \epsilon^+Y)$. Therefore by definition, we obtain
\[\text{Hom}_{D/\mathcal{A}}(QX, Q\epsilon^+Y) \equiv \lim_{(x \to y) \in S(A)^o} \text{Hom}_D(X', \epsilon^+Y) \simeq \text{Hom}(X, \epsilon^+Y). \]
This completes the proof. \qed

Definition 5.3. Let (\mathcal{D}, T) be a triangulated category and let \mathcal{A} be a strictly full triangulated subcategory of \mathcal{D}.

(i) \mathcal{A} is said to be **right admissible** if the inclusion functor $\iota : \mathcal{A} \hookrightarrow \mathcal{D}$ admits a right adjoint functor $\iota^! : \mathcal{D} \to \mathcal{A}$, i.e. for all $X \in \mathcal{D}$ and $Y \in \mathcal{A}$, we have
\[\text{Hom}(Y, \iota^! X) \simeq \text{Hom}_\mathcal{A}(Y, \iota X). \]

(ii) \mathcal{A} is said to be **left admissible** if the inclusion functor $\iota : \mathcal{A} \hookrightarrow \mathcal{D}$ admits a left adjoint functor $\iota_* : \mathcal{D} \to \mathcal{A}$, i.e. for all $X \in \mathcal{D}$ and $Y \in \mathcal{A}$, we have
\[\text{Hom}_\mathcal{A}(\iota_* X, Y) \simeq \text{Hom}(X, \iota Y). \]

(iii) \mathcal{A} is said to be **admissible** if it is both right and left admissible. \qed

Remark 5.4. Let (\mathcal{D}, T) be a triangulated category and let \mathcal{A} be a strictly full triangulated subcategory of \mathcal{D}. For the inclusion functor $\iota : \mathcal{A} \hookrightarrow \mathcal{D}$, the adjoint functors $\iota!$ and ι^* are exact, if they exist. \qed

Definition 5.5. Let \mathcal{D} be a triangulated category.

(i) Let \mathcal{E} be a collection of objects of \mathcal{D}. We denote by $\langle \mathcal{E} \rangle$ the smallest strictly full triangulated subcategory of \mathcal{D} containing all objects of \mathcal{E}. We say that \mathcal{E} **generates** \mathcal{D} if $\mathcal{D} = \langle \mathcal{E} \rangle$.

(ii) Let $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_m$ be full triangulated subcategories of \mathcal{D}. We say that $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_m$ **generate** \mathcal{D} if $\mathcal{D} = \langle \text{Ob}(\mathcal{D}_1) \cup \text{Ob}(\mathcal{D}_2) \cup \cdots \cup \text{Ob}(\mathcal{D}_m) \rangle$. \qed

Definition 5.6. A **semiorthogonal decomposition** of a triangulated category \mathcal{D} is a sequence of strictly full triangulated subcategories $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_m$ of \mathcal{D} such that

(i) $\text{Hom}_\mathcal{D}(A_i, B_j) = 0$ for all integers $1 \leq j < i \leq m$ and any objects $A_i \in \mathcal{D}_i, B_j \in \mathcal{D}_j$,

(ii) for every object $X \in \mathcal{D}$, there exists a collection of distinguished triangles
\[
\begin{array}{c}
0 \to X_m \to X_{m-1} \to \cdots \to X_2 \to X_1 \to X_0 = X \\
\downarrow Y_m \quad \downarrow Y_2 \quad \quad \downarrow Y_1 \quad \quad \downarrow \end{array}
\]
with nonzero objects $Y_k \in \mathcal{D}_k$ for each $k = 1, 2, \ldots, m$.

In this case, we write $\mathcal{D} = \langle \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_m \rangle$. \qed

Lemma 5.7. Let \mathcal{C}, \mathcal{D} be triangulated categories and let $F : \mathcal{C} \to \mathcal{D}$ be a fully faithful exact functor.
(i) Assume that F admits a right adjoint functor G. The unit η gives a distinguished triangle

$$FGY \xrightarrow{\eta_Y} Y \rightarrow \text{Cone}(\eta_Y) \rightarrow TFGY$$

for any $Y \in \mathcal{D}$. Then $\text{Hom}_\mathcal{D}(FX, \text{Cone}(\eta_Y)) = 0$ for all $X \in \mathcal{C}$ and all $Y \in \mathcal{D}$.

(ii) Assume that F admits a left adjoint functor H. The counit ε gives a distinguished triangle

$$Y \xrightarrow{\varepsilon_Y} FHY \rightarrow \text{Cone}(\varepsilon_Y) \rightarrow TY$$

for any $Y \in \mathcal{D}$. Then $\text{Hom}_\mathcal{D}(\text{Cone}(\varepsilon_Y), FX) = 0$ for all $X \in \mathcal{C}$ and all $Y \in \mathcal{D}$.

Proof. We give only the proof of (i), since the proof of (ii) is similar to that of (i).

Applying the functor $\text{Hom}_\mathcal{D}(FX, \bullet)$ with $X \in \mathcal{C}$ to the distinguished triangle above, we have a long exact sequence

$$\cdots \rightarrow \text{Hom}_\mathcal{D}(FX, FGY) \xrightarrow{\eta_Y} \text{Hom}_\mathcal{D}(FX, Y) \rightarrow \text{Hom}_\mathcal{D}(FX, \text{Cone}(\eta_Y)) \rightarrow \text{Hom}_\mathcal{D}(FX, FGY) \rightarrow \cdots.$$

Then it follows from Proposition 2.3 that $\Phi_{X,Y}(\eta_Y \circ F(f)) = f$ for any $f \in \text{Hom}_\mathcal{C}(X, GY)$ and the following diagram is commutative.

$$\begin{array}{ccc}
\text{Hom}_\mathcal{D}(FX, FGY) & \xrightarrow{\eta_Y} & \text{Hom}_\mathcal{D}(FX, Y) \\
\uparrow F & & \downarrow \Phi_{X,Y} \\
\text{Hom}_\mathcal{C}(X, GY) & \xrightarrow{\Phi_{X,Y}} & \text{Hom}_\mathcal{C}(X, GY)
\end{array}$$

Hence η_Y is an isomorphism. Similarly, $-T(\eta_Y)$, is also an isomorphism. Therefore we obtain $\text{Hom}_\mathcal{D}(FX, \text{Cone}(\eta_Y)) = 0$.

Proposition 5.8. Let $\langle \mathcal{D}, T \rangle$ be a triangulated category and let \mathcal{A} be a strictly full triangulated subcategory of \mathcal{D}. Suppose that $\iota : \mathcal{A} \rightarrow \mathcal{D}$ and $\iota^\perp : \mathcal{A}^\perp \rightarrow \mathcal{D}$ are the inclusion functors and $Q : \mathcal{D} \rightarrow \mathcal{D}/\mathcal{A}$ is the Verdier localization functor. Then the following conditions are equivalent:

(i) \mathcal{A} is right admissible.

(ii) For each $X \in \mathcal{D}$, there exists a distinguished triangle

$$X_A \rightarrow X \rightarrow X_A^\perp \rightarrow TX_A$$

with $X_A \in \mathcal{A}$ and $X_A^\perp \in \mathcal{A}^\perp$.

(iii) \mathcal{A} is an epaisse subcategory in \mathcal{D} and the composition functor $Q \circ \iota^\perp : \mathcal{A}^\perp \rightarrow \mathcal{D}/\mathcal{A}$ is an exact equivalence.

(iv) \mathcal{A} is an epaisse subcategory in \mathcal{D} and Q admits a right adjoint functor Q_*.

(v) \mathcal{D} is generated by \mathcal{A} and \mathcal{A}^\perp as a triangulated category.

In this case, we have a semiorthogonal decomposition $\mathcal{D} = \langle \mathcal{A}^\perp, \mathcal{A} \rangle$, and such a triangle in (ii) is unique up to unique isomorphism.

Proof. (i) \Rightarrow (ii). The unit $\eta : \iota^\perp \rightarrow \text{id}_\mathcal{D}$ of the adjunction gives a distinguished triangle in \mathcal{D}

$$\iota^\perp X \xrightarrow{\eta_X} X \rightarrow Y \rightarrow T\iota^\perp X$$

for any $X \in \mathcal{D}$. By Lemma 5.7, $\text{Hom}_\mathcal{D}(\iota Z, Y) = 0$ for any $Z \in \mathcal{A}$. Hence $Y \in \mathcal{A}^\perp$. Therefore we obtain the required distinguished triangle with $X_A := \iota^\perp X \in \mathcal{A}$ and $X_A^\perp := Y \in \mathcal{A}^\perp$.

151
(ii)⇒(i). Let \(X \in \mathcal{D} \). Then there exists a distinguished triangle
\[
Y \to X \to Z \to TY
\]
with \(Y \in \mathcal{A} \) and \(Z \in \mathcal{A}^\perp \). Then we define \(\iota^! X := Y \).

Let us show that such a triangle is unique up to unique isomorphism and the correspondence extends to a functor. To do this, let \(Y' \to X' \to Z' \to TY' \) be another such triangle with \(Y' \in \mathcal{A} \) and \(Z' \in \mathcal{A}^\perp \) and let \(f : X \to X' \) be a morphism. We show that there exists a unique \(\psi : Y \to Y' \) making the following diagram commutative.

\[
\begin{array}{ccc}
Y & \xrightarrow{u} & X \\
\downarrow{\psi} & & \downarrow{f} \\
Y' & \xrightarrow{f} & X'
\end{array}
\]

Applying the functor \(\text{Hom}_\mathcal{D}(Y, \bullet) \) to the second distinguished triangle, and taking into account that \(\text{Hom}_\mathcal{D}(Y, T^{-1}Z') = 0 \) and \(\text{Hom}_\mathcal{D}(Y, Z') = 0 \), we see that \(\text{Hom}_\mathcal{D}(Y, Y') \to \text{Hom}_\mathcal{D}(Y, X') \). In that case, \(\psi \) is the preimage of \(f \circ u \) under this isomorphism. This means that the correspondence extends to a functor uniquely. In particular, if we set \(X' = X \) in the diagram and if \(f \) is the identity morphism \(\text{id}_X \), then we obtain a unique isomorphism \(\psi \). Therefore the correspondence \(\iota^! : \mathcal{D} \to \mathcal{A} \) is a functor.

(ii)⇒(iii). We show that \(\mathcal{A} \) is an epaiss subcategory in \(\mathcal{D} \). Let \(X \) and \(Y \) be objects of \(\mathcal{D} \). Assume \(X \otimes Y \in \mathcal{A} \). We have the following two distinguished triangles.
\[
\begin{array}{c}
X_A \\
X_A \otimes Y_A \to X \otimes Y \to X_{A^\perp} \to TX_{A}, \\
Y_A \to Y \to Y_{A^\perp} \to TY_A,
\end{array}
\]
where \(X_A \to Y_A \in \mathcal{A} \) and \(X_{A^\perp} \to Y_{A^\perp} \in \mathcal{A}^\perp \), respectively. Then we obtain the distinguished triangle
\[
X_A \otimes Y_A \to X \otimes Y \to X_{A^\perp} \otimes Y_{A^\perp} \to TX_A \otimes TY_A.
\]

Since both \(X_A \otimes Y_A \) and \(X \otimes Y \) are object of \(\mathcal{A} \), \(X_{A^\perp} \otimes Y_{A^\perp} \) is also an object of \(\mathcal{A} \) because \(\mathcal{A} \) is strictly full. So \(X_{A^\perp} \otimes Y_{A^\perp} \in \mathcal{A} \cap \mathcal{A}^\perp \), and then \(X_{A^\perp} \otimes Y_{A^\perp} \otimes 0 \). Hence \(X_{A^\perp} = 0 \) and \(Y_{A^\perp} = 0 \).

Therefore we obtain \(X \cong X_A \) and \(Y \cong Y_A \), and thus \(X \) and \(Y \) are objects of \(\mathcal{A} \) because \(\mathcal{A} \) is strictly full.

Next we show that the functor \(Q \circ \iota^\perp \) is an exact equivalence. In order to show this, we prove that \(Q \circ \iota^\perp \) is essentially surjective, because \(Q \circ \iota^\perp \) is fully faithful by Lemma 5.2. For any \(Y = QX \in \mathcal{D}/\mathcal{A} \) with \(X \in \mathcal{D} \), we have a distinguished triangle
\[
X_A \to X \otimes X_{A^\perp} \to TX_A
\]
with \(X_A \in \mathcal{A} \) and \(X_{A^\perp} \in \mathcal{A}^\perp \). Then we obtain \(Y \cong Q(X_A) \).

(iii)⇒(ii). For any \(X \in \mathcal{D} \), there exists an object \(Y \in \mathcal{A}^\perp \) such that \(\overline{\theta} : QX \to Q\iota^\perp Y \) is an isomorphism, because \(Q \circ \iota^\perp \) is essentially surjective. By Lemma 5.2, we obtain a morphism \(\theta : X \otimes \iota^\perp Y \) with \(Q(\theta) = \overline{\theta} \). Then we have a distinguished triangle
\[
Z \to X \otimes \iota^\perp Y \to TZ.
\]
Hence \(QZ = 0 \), and \(Z \in \mathcal{A} \). Therefore we obtain the required distinguished triangle by setting \(X_A = Z \) and \(X_{A^\perp} = \iota^\perp Y \).
(iii) ⇒ (iv). Put $p = Q \circ \iota^\perp$ and $Q_* : = \iota^\perp \circ q$, where q is the quasi-inverse to p. Then we have

$$Q \circ Q_* = Q \circ (\iota^\perp \circ q) = p \circ q \simeq \text{id}_{\mathcal{D}/\mathcal{A}}.$$

For any $Y \in \mathcal{D}$ and any $Z \in \mathcal{D}/\mathcal{A}$, since $Q_* Z \simeq \iota^\perp q Z$, by Lemma 5.2, we have

$$\text{Hom}_{\mathcal{D}}(Y, Q_* Z) \simeq \text{Hom}_{\mathcal{D}/\mathcal{A}}(Q Y, Q Q_* Z) \simeq \text{Hom}_{\mathcal{D}/\mathcal{A}}(Q Y, Z).$$

Hence Q has a right adjoint functor Q_*.

(iv) ⇒ (iii). For any $Y \in \mathcal{A}$ and any $Z \in \mathcal{D}/\mathcal{A}$, we have

$$\text{Hom}_{\mathcal{D}}(Y, Q_* Z) \simeq \text{Hom}_{\mathcal{D}/\mathcal{A}}(Q Y, Z) = 0$$

since $Q \circ \iota^\perp = 0$. Hence Q_* factors through \mathcal{A}^\perp as follows.

\[
\begin{array}{ccc}
\mathcal{D}/\mathcal{A} & \xrightarrow{q} & \mathcal{A}^\perp \\
\downarrow \downarrow & & \downarrow \downarrow \\
\mathcal{D} & \xrightarrow{\iota^\perp} & \mathcal{A}^\perp \\
\end{array}
\]

For any $Y \in \mathcal{A}^\perp$ and any $Z \in \mathcal{D}/\mathcal{A}$, we have

$$\text{Hom}_{\mathcal{D}/\mathcal{A}}(p Y, Z) \simeq \text{Hom}_{\mathcal{D}}(Q \iota^\perp Y, Z) \simeq \text{Hom}_{\mathcal{D}}(\iota^\perp Y, Q_* Z) \simeq \text{Hom}_{\mathcal{A}^\perp}(Y, q Z).$$

Hence q is a right adjoint functor to p. Since p is fully faithful by Lemma 5.2, we see that the counit $\epsilon^\perp : \text{id}_{\mathcal{A}^\perp} \Rightarrow q \circ p$ is an isomorphism from Proposition 2.8.

Next we show that the unit $\eta^\perp : p \circ q \Rightarrow \text{id}_{\mathcal{D}/\mathcal{A}}$ is an isomorphism. For any $X \in \mathcal{D}/\mathcal{A}$, we consider a distinguished triangle

$$pqX \xrightarrow{\iota^\perp} X \rightarrow Y \rightarrow TpqX$$

with $Y \in \mathcal{D}/\mathcal{A}$. By Lemma 5.7, $\text{Hom}_{\mathcal{A}^\perp}(\iota^\perp Y, q Z) = \text{Hom}_{\mathcal{D}/\mathcal{A}}(p Z, Y) = 0$ for any $Z \in \mathcal{A}^\perp$. Hence $q Y \simeq 0$, and $Q_* Y \simeq 0$. For any $W \in \mathcal{D}/\mathcal{A}$,

$$\text{Hom}_{\mathcal{D}/\mathcal{A}}(W, Y) \simeq \text{Hom}_{\mathcal{D}/\mathcal{A}}(Q W, Y) \simeq \text{Hom}_{\mathcal{D}}(W, Q_* Y) = 0.$$

Therefore we obtain $Y \simeq 0$, and thus the unit η^\perp is an isomorphism.

(ii) ⇒ (v). Clear.

(v) ⇒ (ii). We consider the full subcategory \mathcal{D}' generated by the objects $X \in \mathcal{D}$ which can be included in the distinguished triangle $Y \rightarrow X \rightarrow Z \rightarrow TY$ with $Y \in \mathcal{A}$ and $Z \in \mathcal{A}^\perp$. If \mathcal{D}' is a triangulated subcategory of \mathcal{D}, then we have $\mathcal{D}' = \mathcal{D}$ from the condition (v), and we obtain the condition (ii).

First we show that \mathcal{D}' is closed under translation. For any object $X \in \mathcal{D}'$, we have a distinguished triangle $Y \rightarrow X \rightarrow Z \rightarrow TY$ with $Y \in \mathcal{A}$ and $Z \in \mathcal{A}^\perp$. Then for any $i \in \mathbb{Z}$, we obtain a distinguished triangle $T^i Y \rightarrow T^i X \rightarrow T^i Z \rightarrow T^{i+1} Y$. Since \mathcal{A} and \mathcal{A}^\perp are triangulated categories, $T^i Y \in \mathcal{A}$ and $T^i Z \in \mathcal{A}^\perp$, and thus $T^i X \in \mathcal{D}'$.

Next we show that \mathcal{D}' is closed under taking a cone of a morphism. Let X, X' be object of \mathcal{D}' and $f : X \rightarrow X'$ be a morphism. Then we have two distinguished triangles $Y \rightarrow X \rightarrow Z \rightarrow TY$ with $Y \in \mathcal{A}$ and $Z \in \mathcal{A}^\perp$ and $Y' \rightarrow X' \rightarrow Z' \rightarrow TY'$ with $Y' \in \mathcal{A}$ and $Z' \in \mathcal{A}^\perp$.

153
We prove that there exist morphisms \(\phi : Z \to Z' \) and \(\psi : Y \to Y' \) riving a morphism of distinguished triangles

\[
\begin{array}{ccccccccc}
Y & \xrightarrow{u} & X & \xrightarrow{v} & Z & \xrightarrow{w} & TY \\
\downarrow{\psi} & & \downarrow{f} & & \downarrow{\phi} & & \downarrow{T(\psi)} \\
Y' & \xrightarrow{u'} & X' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & TY'.
\end{array}
\]

Applying the functor \(\text{Hom}_D(\bullet, Z') \) to the first distinguished triangle, and taking into account that \(\text{Hom}_D(Y, Z') = 0 \), we see that \(v^* : \text{Hom}_D(Z, Z') \to \text{Hom}_D(X, Z') \). Hence we obtain \(\phi : Z \to Z' \) such that \(\phi \circ v = v' \circ f \), and thus a morphism \((\psi, f, \phi) \) of distinguished triangles.

By Proposition 3.20 of [OT14], the above diagram can be completed to the following diagram:

\[
\begin{array}{ccccccccccc}
Y & \xrightarrow{u} & X & \xrightarrow{v} & Z & \xrightarrow{w} & TY \\
\downarrow{\psi} & & \downarrow{f} & & \downarrow{\phi} & & \downarrow{T(\psi)} \\
Y' & \xrightarrow{u'} & X' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & TY' \\
\downarrow{\psi'} & & \downarrow{\phi'} & & \downarrow{T(\phi')} \\
Y'' & \xrightarrow{\psi''} & X'' & \xrightarrow{v''} & Z'' & \xrightarrow{w''} & TY'' \\
\downarrow{\psi''} & & \downarrow{\phi''} & & \downarrow{T(\phi'')} \\
TY & \xrightarrow{T(u)} & TX & \xrightarrow{T(v)} & TZ & \xrightarrow{T(w)} & T^2Y.
\end{array}
\]

Then \(Y'' \in \mathcal{A} \) and \(Z'' \in \mathcal{A}^\perp \) because \(Y, Y' \in \mathcal{A} \) and \(Z, Z' \in \mathcal{A}^\perp \). Hence \(X'' \in \mathcal{D}' \). Therefore \(\mathcal{D}' \) is a triangulated subcategory of \(\mathcal{D} \).

Similarly, we obtain the following.

Proposition 5.9. Let \((\mathcal{D}, T) \) be a triangulated category and let \(\mathcal{A} \) be a strictly full triangulated subcategory of \(\mathcal{D} \). Suppose that \(\iota : \mathcal{A} \to \mathcal{D} \) and \(\iota^\perp : \mathcal{A}^\perp \to \mathcal{D} \) are the inclusion functors and \(Q : \mathcal{D} \to \mathcal{D}/\mathcal{A} \) is the Verdier localization functor. Then the following conditions are equivalent:

(i) \(\mathcal{A} \) is left admissible.

(ii) For each \(X \in \mathcal{D} \) there exists a distinguished triangle

\[
X \xrightarrow{\iota} X \xrightarrow{X_\mathcal{A}} TX \xrightarrow{X_\mathcal{A}}
\]

with \(X_\mathcal{A} \in \mathcal{A} \) and \(X \mathcal{A} \in \mathcal{A}^\perp \).

(iii) \(\mathcal{A} \) is an epaisse subcategory in \(\mathcal{D} \) and the composition functor \(Q \circ \iota : \mathcal{A} \to \mathcal{D}/\mathcal{A} \) is an exact equivalence.

(iv) \(\mathcal{A} \) is an epaisse subcategory in \(\mathcal{D} \) and \(Q \) admits a left adjoint functor \(Q_! \).

(v) \(\mathcal{A} \) is generated by \(\mathcal{A}^\perp \) and \(\mathcal{A} \) as a triangulated category.

In this case, we have a semiorthogonal decomposition \(\mathcal{D} = \langle \mathcal{A}, \mathcal{A}^\perp \rangle \), and such a triangle in (ii) is unique up to unique isomorphism.

\[\square\]
Example 5.10. Let \mathcal{A} be an admissible triangulated subcategory of a triangulated category \mathcal{D}. Then any such subcategory \mathcal{A} defines a t-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ with $\mathcal{D}^{\leq 0} = \mathcal{A}$ and $\mathcal{D}^{\geq 0} = (\mathcal{T}, \mathcal{A})^{\perp}$ whose heart is trivial. In fact, the converse is true: a t-structure $\mathcal{D}^{\leq 0} \subset \mathcal{D}$ satisfying $\mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0} = 0$ is a triangulated subcategory of \mathcal{D}.

Corollary 5.11. Let \mathcal{D} be a triangulated category and $\mathcal{A} \subset \mathcal{D}$ a strictly full triangulated subcategory.

(i) The following two conditions are equivalent:

(a) $\iota : \mathcal{A} \to \mathcal{D}$ admits a right adjoint functor.

(b) $\iota^\perp : \mathcal{A}^\perp \to \mathcal{D}$ admits a left adjoint functor and $(\mathcal{A}^\perp)^\perp = \mathcal{A}$.

(ii) The following two conditions are equivalent:

(a) $\iota : \mathcal{A} \to \mathcal{D}$ admits a left adjoint functor.

(b) $\iota^\perp : \mathcal{A} \to \mathcal{D}$ admits a right adjoint functor and $(\mathcal{A}^\perp)^\perp = \mathcal{A}$.

Proof. We give only the proof of (i), since the proof of (ii) is similar to that of (i).

(a)\implies(b). $\mathcal{A} \subset (\mathcal{A}^\perp)^\perp$ is clear. Conversely, for $X \in (\mathcal{A}^\perp)^\perp$, by the right admissibility of \mathcal{A}, we have a distinguished triangle $X \to X \to X^\perp \to \mathcal{T}X$ with $X \in \mathcal{A}$ and $X^\perp \in \mathcal{A}^\perp$. By definition, we have $\text{Hom}_\mathcal{D}(X, X^\perp) = 0$, and then $X \simeq X \oplus T^{-1}X^\perp$. Hence we see that $X \in \mathcal{A}$ because \mathcal{A} is an epaisse subcategory in \mathcal{D}. In the case, it follows from (i) and (ii) in Proposition 5.8 and Proposition 5.9 that \mathcal{A} admits a right adjoint functor.

(b)\implies(a). Similarly, this follows from (i) and (ii) in Proposition 5.8 and Proposition 5.9.

References

[Ric 89] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61

Received: October, 6, 2015
Accepted: November, 11, 2015